Alva Kosasih, Wibowo Hardjawana, B. Vucetic, Chao-Kai Wen
{"title":"A Linear Bayesian Learning Receiver Scheme for Massive MIMO Systems","authors":"Alva Kosasih, Wibowo Hardjawana, B. Vucetic, Chao-Kai Wen","doi":"10.1109/WCNC45663.2020.9120718","DOIUrl":null,"url":null,"abstract":"Much stringent reliability and processing latency requirements in ultra-reliable-low-latency-communication (URLLC) traffic make the design of linear massive multiple-input-multiple-output (M-MIMO) receivers becomes very challenging. Recently, Bayesian concept has been used to increase the detection reliability in minimum-mean-square-error (MMSE) linear receivers. However, the latency processing time is a major concern due to the exponential complexity of matrix inversion operations in MMSE schemes. This paper proposes an iterative M-MIMO receiver that is developed by using a Bayesian concept and a parallel interference cancellation (PIC) scheme, referred to as a linear Bayesian learning (LBL) receiver. PIC has a linear complexity as it uses a combination of maximum ratio combining (MRC) and decision statistic combining (DSC) schemes to avoid matrix inversion operations. Simulation results show that the bit-error-rate (BER) and latency processing performances of the proposed receiver outperform the ones of MMSE and best Bayesian-based receivers by minimum 2 dB and 19 times for various M-MIMO system configurations.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Much stringent reliability and processing latency requirements in ultra-reliable-low-latency-communication (URLLC) traffic make the design of linear massive multiple-input-multiple-output (M-MIMO) receivers becomes very challenging. Recently, Bayesian concept has been used to increase the detection reliability in minimum-mean-square-error (MMSE) linear receivers. However, the latency processing time is a major concern due to the exponential complexity of matrix inversion operations in MMSE schemes. This paper proposes an iterative M-MIMO receiver that is developed by using a Bayesian concept and a parallel interference cancellation (PIC) scheme, referred to as a linear Bayesian learning (LBL) receiver. PIC has a linear complexity as it uses a combination of maximum ratio combining (MRC) and decision statistic combining (DSC) schemes to avoid matrix inversion operations. Simulation results show that the bit-error-rate (BER) and latency processing performances of the proposed receiver outperform the ones of MMSE and best Bayesian-based receivers by minimum 2 dB and 19 times for various M-MIMO system configurations.