A Spike-based Cellular-Neural Network Architecture for Spatiotemporal filtering

Jonah P. Sengupta, M. Villemur, A. Andreou
{"title":"A Spike-based Cellular-Neural Network Architecture for Spatiotemporal filtering","authors":"Jonah P. Sengupta, M. Villemur, A. Andreou","doi":"10.1109/CISS50987.2021.9400308","DOIUrl":null,"url":null,"abstract":"The foundation and architecture for a spike-based, neuromorphic cellular neural network is presented. Spike information from an event-based, dynamic vision sensor is processed asynchronously by the architecture in parallel. An array of $N^{2}$ processing elements (PEs) with eight neighbor clique is the primitive unit of the processor. Spatiotemporal filtering of spike data is accomplised via mixed-signed, embedded morphological processing using a simplicial piecewise linear approximation. Preliminary simulation and modeling on data acquired from event-based sensors show a clear pathway towards the realization of the architecture in hardware.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The foundation and architecture for a spike-based, neuromorphic cellular neural network is presented. Spike information from an event-based, dynamic vision sensor is processed asynchronously by the architecture in parallel. An array of $N^{2}$ processing elements (PEs) with eight neighbor clique is the primitive unit of the processor. Spatiotemporal filtering of spike data is accomplised via mixed-signed, embedded morphological processing using a simplicial piecewise linear approximation. Preliminary simulation and modeling on data acquired from event-based sensors show a clear pathway towards the realization of the architecture in hardware.
一种基于脉冲的细胞神经网络时空滤波结构
提出了一种基于峰值的神经形态细胞神经网络的基础和结构。基于事件的动态视觉传感器的脉冲信息被并行处理。$N^{2}$处理元素(pe)的数组具有8个相邻的团,是处理器的基本单元。脉冲数据的时空滤波是通过使用简单分段线性近似的混合签名嵌入形态学处理来完成的。对基于事件传感器的数据进行了初步的仿真和建模,为该体系结构在硬件上的实现提供了清晰的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信