{"title":"Soft Biometrics Estimation Using Shearlet and Waveatom Transforms With Three Different Classifiers","authors":"A. El-Samak, M. Alhanjouri","doi":"10.1109/PICECE.2019.8747179","DOIUrl":null,"url":null,"abstract":"The goal is to find the best feature extraction, which performs the smallest feature vector length and gives the highest performance. In this paper, we proposed a methodology to extract effective features from facial images using two multiresolution transforms; waveatom and shearlet, for estimating gender, ethnicity, facial expression and age. Three classifiers used to perform the final estimation, which are: Artificial Neural Network (ANN), Support vector machine (SVM) and Self-Organization Map (SOM). A comparative study is made to determine the best extractor and classifier. Experiments carried out on a large database collected from three different databases: US Adult Faces, Extended Cohn-Kanade and FG-NET database. The experimental results of the proposed methodology using waveatom transform proved to be effective in the three classifiers, In contrast of shearlet transform.","PeriodicalId":375980,"journal":{"name":"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICECE.2019.8747179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The goal is to find the best feature extraction, which performs the smallest feature vector length and gives the highest performance. In this paper, we proposed a methodology to extract effective features from facial images using two multiresolution transforms; waveatom and shearlet, for estimating gender, ethnicity, facial expression and age. Three classifiers used to perform the final estimation, which are: Artificial Neural Network (ANN), Support vector machine (SVM) and Self-Organization Map (SOM). A comparative study is made to determine the best extractor and classifier. Experiments carried out on a large database collected from three different databases: US Adult Faces, Extended Cohn-Kanade and FG-NET database. The experimental results of the proposed methodology using waveatom transform proved to be effective in the three classifiers, In contrast of shearlet transform.