{"title":"Syndrome Compression for Optimal Redundancy Codes","authors":"Jin Sima, Ryan Gabrys, Jehoshua Bruck","doi":"10.1109/ISIT44484.2020.9174009","DOIUrl":null,"url":null,"abstract":"We introduce a general technique that we call syndrome compression, for designing low-redundancy error correcting codes. The technique allows us to boost the redundancy efficiency of hash/labeling-based codes by further compressing the labeling. We apply syndrome compression to different types of adversarial deletion channels and present code constructions that correct up to a constant number of errors. Our code constructions achieve the redundancy of twice the Gilbert-Varshamov bound, which improve upon the state of art for these channels. The encoding/decoding complexity of our constructions is of order equal to the size of the corresponding deletion balls, namely, it is polynomial in the code length.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We introduce a general technique that we call syndrome compression, for designing low-redundancy error correcting codes. The technique allows us to boost the redundancy efficiency of hash/labeling-based codes by further compressing the labeling. We apply syndrome compression to different types of adversarial deletion channels and present code constructions that correct up to a constant number of errors. Our code constructions achieve the redundancy of twice the Gilbert-Varshamov bound, which improve upon the state of art for these channels. The encoding/decoding complexity of our constructions is of order equal to the size of the corresponding deletion balls, namely, it is polynomial in the code length.