Syndrome Compression for Optimal Redundancy Codes

Jin Sima, Ryan Gabrys, Jehoshua Bruck
{"title":"Syndrome Compression for Optimal Redundancy Codes","authors":"Jin Sima, Ryan Gabrys, Jehoshua Bruck","doi":"10.1109/ISIT44484.2020.9174009","DOIUrl":null,"url":null,"abstract":"We introduce a general technique that we call syndrome compression, for designing low-redundancy error correcting codes. The technique allows us to boost the redundancy efficiency of hash/labeling-based codes by further compressing the labeling. We apply syndrome compression to different types of adversarial deletion channels and present code constructions that correct up to a constant number of errors. Our code constructions achieve the redundancy of twice the Gilbert-Varshamov bound, which improve upon the state of art for these channels. The encoding/decoding complexity of our constructions is of order equal to the size of the corresponding deletion balls, namely, it is polynomial in the code length.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We introduce a general technique that we call syndrome compression, for designing low-redundancy error correcting codes. The technique allows us to boost the redundancy efficiency of hash/labeling-based codes by further compressing the labeling. We apply syndrome compression to different types of adversarial deletion channels and present code constructions that correct up to a constant number of errors. Our code constructions achieve the redundancy of twice the Gilbert-Varshamov bound, which improve upon the state of art for these channels. The encoding/decoding complexity of our constructions is of order equal to the size of the corresponding deletion balls, namely, it is polynomial in the code length.
最优冗余码的证候压缩
为了设计低冗余纠错码,我们引入了一种称为“综合征压缩”的通用技术。该技术允许我们通过进一步压缩标记来提高基于哈希/标记的代码的冗余效率。我们将综合征压缩应用于不同类型的对抗性删除通道,并提出了可以纠正恒定数量错误的代码结构。我们的代码结构实现了吉尔伯特-瓦尔沙莫夫界的两倍的冗余,这改进了这些信道的技术状态。我们构造的编码/解码复杂度与相应的删除球的大小是等次的,即它是编码长度的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信