The Shark Attack Problem: The Gamma-Poisson Conjugate

T. Donovan, R. Mickey
{"title":"The Shark Attack Problem: The Gamma-Poisson Conjugate","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0011","DOIUrl":null,"url":null,"abstract":"This chapter introduces the gamma-Poisson conjugate. Many Bayesian analyses consider alternative parameter values as hypotheses. The prior distribution for an unknown parameter can be represented by a continuous probability density function when the number of hypotheses is infinite. There are special cases where a Bayesian prior probability distribution for an unknown parameter of interest can be quickly updated to a posterior distribution of the same form as the prior. In the “Shark Attack Problem,” a gamma distribution is used as the prior distribution of λ‎, the mean number of shark attacks in a given year. Poisson data are then collected to determine the number of attacks in a given year. The prior distribution is updated to the posterior distribution in light of this new information. In short, a gamma prior distribution + Poisson data → gamma posterior distribution. The gamma distribution is said to be “conjugate to” the Poisson distribution.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter introduces the gamma-Poisson conjugate. Many Bayesian analyses consider alternative parameter values as hypotheses. The prior distribution for an unknown parameter can be represented by a continuous probability density function when the number of hypotheses is infinite. There are special cases where a Bayesian prior probability distribution for an unknown parameter of interest can be quickly updated to a posterior distribution of the same form as the prior. In the “Shark Attack Problem,” a gamma distribution is used as the prior distribution of λ‎, the mean number of shark attacks in a given year. Poisson data are then collected to determine the number of attacks in a given year. The prior distribution is updated to the posterior distribution in light of this new information. In short, a gamma prior distribution + Poisson data → gamma posterior distribution. The gamma distribution is said to be “conjugate to” the Poisson distribution.
鲨鱼攻击问题:伽玛-泊松共轭
本章介绍了γ -泊松共轭。许多贝叶斯分析将可选参数值作为假设。当假设数目为无穷大时,未知参数的先验分布可以用连续概率密度函数表示。在某些特殊情况下,未知参数的贝叶斯先验概率分布可以快速更新为与先验相同形式的后验分布。在“鲨鱼攻击问题”中,gamma分布被用作λ的先验分布,λ是给定年份中鲨鱼攻击的平均数量。然后收集泊松数据来确定给定年份的攻击次数。根据这些新信息,先验分布被更新为后验分布。简而言之,一个先验分布+泊松数据→后验分布。伽马分布被认为是泊松分布的“共轭”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信