{"title":"The Shark Attack Problem: The Gamma-Poisson Conjugate","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0011","DOIUrl":null,"url":null,"abstract":"This chapter introduces the gamma-Poisson conjugate. Many Bayesian analyses consider alternative parameter values as hypotheses. The prior distribution for an unknown parameter can be represented by a continuous probability density function when the number of hypotheses is infinite. There are special cases where a Bayesian prior probability distribution for an unknown parameter of interest can be quickly updated to a posterior distribution of the same form as the prior. In the “Shark Attack Problem,” a gamma distribution is used as the prior distribution of λ, the mean number of shark attacks in a given year. Poisson data are then collected to determine the number of attacks in a given year. The prior distribution is updated to the posterior distribution in light of this new information. In short, a gamma prior distribution + Poisson data → gamma posterior distribution. The gamma distribution is said to be “conjugate to” the Poisson distribution.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter introduces the gamma-Poisson conjugate. Many Bayesian analyses consider alternative parameter values as hypotheses. The prior distribution for an unknown parameter can be represented by a continuous probability density function when the number of hypotheses is infinite. There are special cases where a Bayesian prior probability distribution for an unknown parameter of interest can be quickly updated to a posterior distribution of the same form as the prior. In the “Shark Attack Problem,” a gamma distribution is used as the prior distribution of λ, the mean number of shark attacks in a given year. Poisson data are then collected to determine the number of attacks in a given year. The prior distribution is updated to the posterior distribution in light of this new information. In short, a gamma prior distribution + Poisson data → gamma posterior distribution. The gamma distribution is said to be “conjugate to” the Poisson distribution.