DYNAMICAL SYSTEMS EVOLVING

L. Young
{"title":"DYNAMICAL SYSTEMS EVOLVING","authors":"L. Young","doi":"10.1142/9789813272880_0035","DOIUrl":null,"url":null,"abstract":"This is an expanded version of a presentation given at ICM2018. It discusses a number of results taken from a cross-section of the author’s work in Dynamical Systems. The topics include relation between entropy, Lyapunov exponents and fractal dimension, statistical properties of chaotic dynamical systems, physically relevant invariant measures, strange attractors arising from shearinduced chaos, random maps and random attractors. The last section contains two applications of Dynamical Systems ideas to Biology, one to epidemics control and the other to computational neuroscience.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This is an expanded version of a presentation given at ICM2018. It discusses a number of results taken from a cross-section of the author’s work in Dynamical Systems. The topics include relation between entropy, Lyapunov exponents and fractal dimension, statistical properties of chaotic dynamical systems, physically relevant invariant measures, strange attractors arising from shearinduced chaos, random maps and random attractors. The last section contains two applications of Dynamical Systems ideas to Biology, one to epidemics control and the other to computational neuroscience.
动力系统的演化
这是在ICM2018上演讲的扩展版本。它讨论了作者在动力系统中工作的横截面所取得的一些结果。主题包括熵、李雅普诺夫指数与分形维数的关系、混沌动力系统的统计性质、物理相关不变测度、剪切诱导混沌产生的奇异吸引子、随机映射和随机吸引子。最后一部分包含动力系统思想在生物学中的两个应用,一个用于流行病控制,另一个用于计算神经科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信