Fast nonrecursive 1D inversion by filtering acoustic-reflection data

E. Slob, K. Wapenaar, S. Treitel
{"title":"Fast nonrecursive 1D inversion by filtering acoustic-reflection data","authors":"E. Slob, K. Wapenaar, S. Treitel","doi":"10.1190/SEGAM2018-2998538.1","DOIUrl":null,"url":null,"abstract":"We derive a fast acoustic inversion method for a piecewise homogeneous horizontally layered medium. The method obtains medium parameters from the reflection response. The method can be implemented to obtain the parameters on either side of a reflector at an arbitrary depth. Three processing steps lead to the inversion result. First, we solve a modified Marchenko type equation to obtain a focusing wavefield. We then apply wavefield continuation across a reflecting boundary to the focusing wavefield and retrieve the reflection coefficient of a reflector as a function of horizontal slowness. Finally, we use the reflection coefficient to obtain the velocities and the ratio of the densities above and below the reflector. Because the two-way traveltime difference of the primary reflection and the one above it becomes known during the process, the thickness of the layer above the reflector is also found. The method can be applied multiple times in different zones, or recursively in a target zone without having to solve more Marchenko type equations. The numerical example illustrates that the method works well on modeled data without the need for a priori model information.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEG Technical Program Expanded Abstracts 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/SEGAM2018-2998538.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We derive a fast acoustic inversion method for a piecewise homogeneous horizontally layered medium. The method obtains medium parameters from the reflection response. The method can be implemented to obtain the parameters on either side of a reflector at an arbitrary depth. Three processing steps lead to the inversion result. First, we solve a modified Marchenko type equation to obtain a focusing wavefield. We then apply wavefield continuation across a reflecting boundary to the focusing wavefield and retrieve the reflection coefficient of a reflector as a function of horizontal slowness. Finally, we use the reflection coefficient to obtain the velocities and the ratio of the densities above and below the reflector. Because the two-way traveltime difference of the primary reflection and the one above it becomes known during the process, the thickness of the layer above the reflector is also found. The method can be applied multiple times in different zones, or recursively in a target zone without having to solve more Marchenko type equations. The numerical example illustrates that the method works well on modeled data without the need for a priori model information.
滤波声反射数据的快速非递归一维反演
提出了一种分段均匀水平层状介质的快速声波反演方法。该方法从反射响应中获得介质参数。该方法可实现在任意深度上获得反射器两侧的参数。三个处理步骤得到反演结果。首先,我们求解一个修正的Marchenko型方程,得到聚焦波场。然后,我们通过反射边界对聚焦波场进行波场延图,并检索反射器的反射系数作为水平慢度的函数。最后,我们利用反射系数得到速度和反射面上下密度的比值。由于在此过程中,主反射与上反射的双向行时差是已知的,因此也可以求出反射器上一层的厚度。该方法可以在不同的区域多次应用,或者在目标区域递归地应用,而不必求解更多的马尔琴科型方程。数值算例表明,该方法在不需要先验模型信息的情况下可以很好地处理建模数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信