Real-time patch-based stylization of portraits using generative adversarial network

David Futschik, Menglei Chai, Chen Cao, Chongyang Ma, A. Stoliar, Sergey Korolev, S. Tulyakov, Michal Kučera, D. Sýkora
{"title":"Real-time patch-based stylization of portraits using generative adversarial network","authors":"David Futschik, Menglei Chai, Chen Cao, Chongyang Ma, A. Stoliar, Sergey Korolev, S. Tulyakov, Michal Kučera, D. Sýkora","doi":"10.2312/exp.20191074","DOIUrl":null,"url":null,"abstract":"We present a learning-based style transfer algorithm for human portraits which significantly outperforms current state-of-the-art in computational overhead while still maintaining comparable visual quality. We show how to design a conditional generative adversarial network capable to reproduce the output of Fišer et al.'s patch-based method [FJS* 17] that is slow to compute but can deliver state-of-the-art visual quality. Since the resulting end-to-end network can be evaluated quickly on current consumer GPUs, our solution enables first real-time high-quality style transfer to facial videos that runs at interactive frame rates. Moreover, in cases when the original algorithmic approach of Fišer et al. fails our network can provide a more visually pleasing result thanks to generalization. We demonstrate the practical utility of our approach on a variety of different styles and target subjects.","PeriodicalId":407491,"journal":{"name":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/exp.20191074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a learning-based style transfer algorithm for human portraits which significantly outperforms current state-of-the-art in computational overhead while still maintaining comparable visual quality. We show how to design a conditional generative adversarial network capable to reproduce the output of Fišer et al.'s patch-based method [FJS* 17] that is slow to compute but can deliver state-of-the-art visual quality. Since the resulting end-to-end network can be evaluated quickly on current consumer GPUs, our solution enables first real-time high-quality style transfer to facial videos that runs at interactive frame rates. Moreover, in cases when the original algorithmic approach of Fišer et al. fails our network can provide a more visually pleasing result thanks to generalization. We demonstrate the practical utility of our approach on a variety of different styles and target subjects.
使用生成对抗网络的实时基于补丁的肖像风格化
我们提出了一种基于学习的人类肖像风格迁移算法,该算法在计算开销方面显著优于当前最先进的算法,同时仍保持相当的视觉质量。我们展示了如何设计一个条件生成对抗网络,能够重现Fišer等人基于补丁的方法[FJS* 17]的输出,该方法计算速度慢,但可以提供最先进的视觉质量。由于由此产生的端到端网络可以在当前的消费类gpu上快速评估,因此我们的解决方案首次实现了以交互帧率运行的面部视频的实时高质量风格传输。此外,在Fišer等人的原始算法方法失败的情况下,由于泛化,我们的网络可以提供更直观的结果。我们展示了我们的方法在各种不同风格和目标科目上的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信