Classification of multichannel EEG data using length/energy transforms

David Gutiérrez, Fabián Garcı́a-Nocetti, Julio Solano-González
{"title":"Classification of multichannel EEG data using length/energy transforms","authors":"David Gutiérrez, Fabián Garcı́a-Nocetti, Julio Solano-González","doi":"10.1109/CAMAP.2005.1574224","DOIUrl":null,"url":null,"abstract":"We propose the use of length and energy transforms in the classification of multichannel EEG data to identify different cognitive activity using a reduced set of recording electrodes. The length transform (ET) represents a temporarily smoothed time course of the data, while the energy transform (ET) can be interpreted as a short-term energy estimate. The transformation of the data in the length/energy domain allows to effectively preserving important data features when autoregressive (AR) models are used to reduce the dimension of the classification problem. We evaluate the performance of the ET and ET on the classification of real cognitive EEG data for the case when the optimal AR model is selected under the Schwarz's Bayesian criterion (SBC) and a Mahalanobis distance-based classifier is used. Our results show that accurate classification is achieved when the data is transformed through the ET or ET even for low-order AR models, having the ET slightly better performance","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose the use of length and energy transforms in the classification of multichannel EEG data to identify different cognitive activity using a reduced set of recording electrodes. The length transform (ET) represents a temporarily smoothed time course of the data, while the energy transform (ET) can be interpreted as a short-term energy estimate. The transformation of the data in the length/energy domain allows to effectively preserving important data features when autoregressive (AR) models are used to reduce the dimension of the classification problem. We evaluate the performance of the ET and ET on the classification of real cognitive EEG data for the case when the optimal AR model is selected under the Schwarz's Bayesian criterion (SBC) and a Mahalanobis distance-based classifier is used. Our results show that accurate classification is achieved when the data is transformed through the ET or ET even for low-order AR models, having the ET slightly better performance
基于长度/能量变换的多通道脑电数据分类
我们提出在多通道EEG数据分类中使用长度和能量变换来识别不同的认知活动,使用一组简化的记录电极。长度变换(ET)表示数据暂时平滑的时间过程,而能量变换(ET)可以解释为短期能量估计。当使用自回归(AR)模型对分类问题进行降维处理时,数据在长度/能量域中的转换可以有效地保留重要的数据特征。在Schwarz贝叶斯准则(SBC)下选择最优AR模型并使用基于马氏距离的分类器的情况下,我们评估了ET和ET对真实认知脑电数据分类的性能。我们的研究结果表明,即使对于低阶AR模型,通过ET或ET变换数据也能实现准确的分类,ET的性能略好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信