An Itemset-Driven Cluster-Oriented Approach to Extract Compact and Meaningful Sets of Association Rules

C. H. Yamamoto, Maria Cristina Ferreira de Oliveira, M. L. Fujimoto, S. O. Rezende
{"title":"An Itemset-Driven Cluster-Oriented Approach to Extract Compact and Meaningful Sets of Association Rules","authors":"C. H. Yamamoto, Maria Cristina Ferreira de Oliveira, M. L. Fujimoto, S. O. Rezende","doi":"10.1109/ICMLA.2007.45","DOIUrl":null,"url":null,"abstract":"Extracting association rules from large datasets typically results in a huge amount of rules. An approach to tackle this problem is to filter the resulting rule set, which reduces the rules, at the cost of also eliminating potentially interesting ones. In exploring a new dataset in search of relevant associations, it may be more useful for miners to have an overview of the space of rules obtainable from the dataset, rather than getting an arbitrary set satisfying high values for given interest measures. We describe a rule extraction approach that favors rule diversity, allowing miners to gain an overview of the rule space while reducing semantic redundancy within the rule set. This approach adopts an itemset-driven rule generation coupled with a cluster-based filtering process. The set of rules so obtained provides a starting point for a user-driven exploration of it.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Extracting association rules from large datasets typically results in a huge amount of rules. An approach to tackle this problem is to filter the resulting rule set, which reduces the rules, at the cost of also eliminating potentially interesting ones. In exploring a new dataset in search of relevant associations, it may be more useful for miners to have an overview of the space of rules obtainable from the dataset, rather than getting an arbitrary set satisfying high values for given interest measures. We describe a rule extraction approach that favors rule diversity, allowing miners to gain an overview of the rule space while reducing semantic redundancy within the rule set. This approach adopts an itemset-driven rule generation coupled with a cluster-based filtering process. The set of rules so obtained provides a starting point for a user-driven exploration of it.
一种项集驱动的面向聚类的关联规则紧凑有意义集提取方法
从大型数据集中提取关联规则通常会产生大量的规则。解决这个问题的一种方法是过滤结果规则集,这样可以减少规则,但同时也要消除可能有趣的规则。在探索新的数据集以寻找相关关联时,对于矿工来说,从数据集中获得可获得的规则空间的概述可能更有用,而不是为给定的兴趣度量获得满足高值的任意集合。我们描述了一种有利于规则多样性的规则提取方法,允许矿工在减少规则集中的语义冗余的同时获得规则空间的概述。这种方法采用了项集驱动的规则生成和基于聚类的过滤过程。这样获得的规则集为用户驱动的探索提供了一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信