Some New Existence Results for a Class of Four Point Nonlinear Boundary Value Problems

Nazia Urus, A. Verma, Mandeep Singh
{"title":"Some New Existence Results for a Class of Four Point Nonlinear Boundary Value Problems","authors":"Nazia Urus, A. Verma, Mandeep Singh","doi":"10.29320/SJNPGRJ.3.1.2","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following class of four point boundary value\nproblems—y\"(x) = f (x, y), 0 less than x lessthan 1, y'(0) = 0, y(1) = 1y(1) + 2)7(2)’where 1, 2  0 lesstahn 1, 2 less than 1, and f (x, y), is continuous in one sided Lipschitz in y. We propose a monotone iterative scheme and show that under some sufficient conditions this scheme generates sequences which converges uniformly to solution of the nonlinear multipint boundary value problem.","PeriodicalId":184235,"journal":{"name":"SRI JNPG COLLEGE REVELATION A JOURNAL OF POPULAR SCIENCE","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SRI JNPG COLLEGE REVELATION A JOURNAL OF POPULAR SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29320/SJNPGRJ.3.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we consider the following class of four point boundary value problems—y"(x) = f (x, y), 0 less than x lessthan 1, y'(0) = 0, y(1) = 1y(1) + 2)7(2)’where 1, 2  0 lesstahn 1, 2 less than 1, and f (x, y), is continuous in one sided Lipschitz in y. We propose a monotone iterative scheme and show that under some sufficient conditions this scheme generates sequences which converges uniformly to solution of the nonlinear multipint boundary value problem.
一类四点非线性边值问题的一些新的存在性结果
在本文中,我们考虑以下四类边界valueproblems-y”(x) = f (x, y), 0小于x小于1,y ' (0) = 0, y(1) =1 y(1)+2)7(2)“1,20 lesstahn1,2比1,和f (x, y),是连续在单侧李普希茨y。我们提出一个单调迭代计划和证明一些充分条件下该方案生成序列一致收敛的非线性multipint边值问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信