A scheme for robust distributed sensor fusion based on average consensus

Lin Xiao, Stephen P. Boyd, S. Lall
{"title":"A scheme for robust distributed sensor fusion based on average consensus","authors":"Lin Xiao, Stephen P. Boyd, S. Lall","doi":"10.1109/IPSN.2005.1440896","DOIUrl":null,"url":null,"abstract":"We consider a network of distributed sensors, where where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximum-likelihood estimate of the parameters. This scheme doesn't involve explicit point-to-point message passing or routing; instead, it diffuses information across the network by updating each node's data with a weighted average of its neighbors' data (they maintain the same data structure). At each step, every node can compute a local weighted least-squares estimate, which converges to the global maximum-likelihood solution. This scheme is robust to unreliable communication links. We show that it works in a network with dynamically changing topology, provided that the infinitely occurring communication graphs are jointly connected.","PeriodicalId":174256,"journal":{"name":"IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1415","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2005.1440896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1415

Abstract

We consider a network of distributed sensors, where where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximum-likelihood estimate of the parameters. This scheme doesn't involve explicit point-to-point message passing or routing; instead, it diffuses information across the network by updating each node's data with a weighted average of its neighbors' data (they maintain the same data structure). At each step, every node can compute a local weighted least-squares estimate, which converges to the global maximum-likelihood solution. This scheme is robust to unreliable communication links. We show that it works in a network with dynamically changing topology, provided that the infinitely occurring communication graphs are jointly connected.
一种基于平均一致性的鲁棒分布式传感器融合方案
我们考虑一个分布式传感器网络,其中每个传感器对一些未知参数进行线性测量,这些参数被独立的高斯噪声破坏。我们提出了一种简单的分布式迭代方案,基于网络中的分布式平均共识来计算参数的最大似然估计。该方案不涉及显式的点对点消息传递或路由;相反,它通过使用相邻节点数据的加权平均值来更新每个节点的数据(它们保持相同的数据结构),从而在网络中传播信息。在每一步中,每个节点都可以计算一个局部加权最小二乘估计,该估计收敛到全局最大似然解。该方案对不可靠通信链路具有较强的鲁棒性。我们证明了它适用于具有动态变化拓扑的网络,只要无限出现的通信图是联合连接的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信