Efficient data compression methods for multi-dimensional sparse array operations

Chun-Yuan Lin, Yeh-Ching Chung, Jenshiuh Liu
{"title":"Efficient data compression methods for multi-dimensional sparse array operations","authors":"Chun-Yuan Lin, Yeh-Ching Chung, Jenshiuh Liu","doi":"10.1109/CW.2002.1180861","DOIUrl":null,"url":null,"abstract":"For sparse array operations, in general, the sparse arrays are compressed by some data compression schemes in order to obtain better performance. The Compressed Row/Column Storage (CRS/CCS) schemes are the two common used data compression schemes for sparse arrays in the traditional matrix representation (TMR). When extended to higher dimensional sparse arrays, array operations using the CRS/CCS schemes usually do not perform well. We propose two data compression schemes, extended Karnaugh map representation Compressed Row/Column Storage (ECRS/ ECCS) for multi-dimensional sparse arrays based on the EKMR scheme. To evaluate the proposed schemes, both theoretical analysis and experimental tests are conducted. In theoretical analysis, we analyze CRS/CCS and ECRS/ECCS schemes in terms of the time complexity, the space complexity, and the range of their usability for practical applications. In experimental test, we compare the performance of matrix-matrix addition and matrix-matrix multiplication sparse array operations that use the CRS/CCS and ECRS/ECCS schemes. The experimental results show that sparse array operations based on the ECRS/ECCS schemes outperform those based on the CRS/CCS schemes for all test samples.","PeriodicalId":376322,"journal":{"name":"First International Symposium on Cyber Worlds, 2002. Proceedings.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Cyber Worlds, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2002.1180861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For sparse array operations, in general, the sparse arrays are compressed by some data compression schemes in order to obtain better performance. The Compressed Row/Column Storage (CRS/CCS) schemes are the two common used data compression schemes for sparse arrays in the traditional matrix representation (TMR). When extended to higher dimensional sparse arrays, array operations using the CRS/CCS schemes usually do not perform well. We propose two data compression schemes, extended Karnaugh map representation Compressed Row/Column Storage (ECRS/ ECCS) for multi-dimensional sparse arrays based on the EKMR scheme. To evaluate the proposed schemes, both theoretical analysis and experimental tests are conducted. In theoretical analysis, we analyze CRS/CCS and ECRS/ECCS schemes in terms of the time complexity, the space complexity, and the range of their usability for practical applications. In experimental test, we compare the performance of matrix-matrix addition and matrix-matrix multiplication sparse array operations that use the CRS/CCS and ECRS/ECCS schemes. The experimental results show that sparse array operations based on the ECRS/ECCS schemes outperform those based on the CRS/CCS schemes for all test samples.
多维稀疏数组操作的高效数据压缩方法
对于稀疏数组操作,为了获得更好的性能,通常会对稀疏数组进行一些数据压缩方案的压缩。压缩行/列存储(CRS/CCS)方案是传统矩阵表示(TMR)中稀疏数组常用的两种数据压缩方案。当扩展到高维稀疏数组时,使用CRS/CCS方案的数组操作通常性能不佳。本文提出了两种数据压缩方案:基于EKMR方案的扩展卡诺映射表示压缩行/列存储(ECRS/ ECCS)。为了评估所提出的方案,进行了理论分析和实验测试。在理论分析中,分别从时间复杂度、空间复杂度以及实际应用的可用性等方面分析了CRS/CCS和ECRS/ECCS方案。在实验测试中,我们比较了使用CRS/CCS和ECRS/ECCS方案的矩阵-矩阵加法和矩阵-矩阵乘法稀疏数组运算的性能。实验结果表明,在所有测试样本中,基于ECRS/ECCS方案的稀疏阵列运算都优于基于CRS/CCS方案的稀疏阵列运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信