{"title":"Function of hydrogen in intergranular fracture of martensitic steels","authors":"M. Nagumo, H. Matsuda","doi":"10.1080/01418610208240452","DOIUrl":null,"url":null,"abstract":"Abstract The mechanism of intergranular-mode fracture in hydrogen-related failure of high-strength martensitic steels has been investigated. Pronounced degradation of tensile properties appeared with increasing manganese content in a slow-elongation-rate test under concurrent hydrogen charging. The fracture mode was intergranular with tear traces along martensite lath boundaries. The tear traces disappeared and the average surface roughness decreased with increasing manganese content. Thermal desorption analysis of hydrogen charged to deformed specimens has been conducted using hydrogen as a probe of defects. It was revealed that the density of point defects increased owing to straining and was more noticeable in steels with a higher manganese content. In common with transgranular-mode fracture, the primary function of hydrogen in intergranular-mode fracture is thought to be one of stabilizing and increasing the density of strain-induced vacancies that lead to the formation of microcracks or microvoids in the vicinity of boundaries. The constraint of plastic deformation at grain boundaries due to boundary phases is likely to determine the susceptibility to hydrogen-related failure induced by strain concentration.","PeriodicalId":114492,"journal":{"name":"Philosophical Magazine A","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01418610208240452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63
Abstract
Abstract The mechanism of intergranular-mode fracture in hydrogen-related failure of high-strength martensitic steels has been investigated. Pronounced degradation of tensile properties appeared with increasing manganese content in a slow-elongation-rate test under concurrent hydrogen charging. The fracture mode was intergranular with tear traces along martensite lath boundaries. The tear traces disappeared and the average surface roughness decreased with increasing manganese content. Thermal desorption analysis of hydrogen charged to deformed specimens has been conducted using hydrogen as a probe of defects. It was revealed that the density of point defects increased owing to straining and was more noticeable in steels with a higher manganese content. In common with transgranular-mode fracture, the primary function of hydrogen in intergranular-mode fracture is thought to be one of stabilizing and increasing the density of strain-induced vacancies that lead to the formation of microcracks or microvoids in the vicinity of boundaries. The constraint of plastic deformation at grain boundaries due to boundary phases is likely to determine the susceptibility to hydrogen-related failure induced by strain concentration.