HYBRID COOLING DESIGN OF PERMANENT MAGNET SYNCHRONOUS MACHINES

Q. Li, X. Shen, B. Mecrow, X. Deng
{"title":"HYBRID COOLING DESIGN OF PERMANENT MAGNET SYNCHRONOUS MACHINES","authors":"Q. Li, X. Shen, B. Mecrow, X. Deng","doi":"10.1049/icp.2021.1044","DOIUrl":null,"url":null,"abstract":"This paper presents the challenges of creating a cooling system for a permanent magnet machine with high power density. A hybrid air/water cooling system is presented with the aim of enhancing the cooling performance of the stator. Finite element calculations are first used to determine the winding loss in the stator, including skin and proximity effect. The effect of air speed, turbulence of the air flow and liquid speed have been discussed to find the best working point, using CFD simulation. The performance of the hybrid cooling system has been evaluated and design recommendations established.","PeriodicalId":188371,"journal":{"name":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the challenges of creating a cooling system for a permanent magnet machine with high power density. A hybrid air/water cooling system is presented with the aim of enhancing the cooling performance of the stator. Finite element calculations are first used to determine the winding loss in the stator, including skin and proximity effect. The effect of air speed, turbulence of the air flow and liquid speed have been discussed to find the best working point, using CFD simulation. The performance of the hybrid cooling system has been evaluated and design recommendations established.
永磁同步电机的混合冷却设计
本文介绍了为高功率密度永磁电机创建冷却系统所面临的挑战。为了提高定子的冷却性能,提出了一种空气/水混合冷却系统。首先采用有限元法计算定子绕组损耗,包括趋肤效应和接近效应。通过CFD模拟,讨论了气流速度、气流湍流度和液体速度的影响,找到了最佳工作点。对混合冷却系统的性能进行了评价,并提出了设计建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信