New construction of asymptotically optimal optical orthogonal codes

Jin-Ho Chung, Kyeongcheol Yang
{"title":"New construction of asymptotically optimal optical orthogonal codes","authors":"Jin-Ho Chung, Kyeongcheol Yang","doi":"10.1109/ITWF.2015.7360748","DOIUrl":null,"url":null,"abstract":"An optical orthogonal code (OOC) of length N is a set of {0, 1}-sequences of length N, all of which have a constant weight. It is employed as a spreading code in optical communication systems, where 1 means signal `on' and 0 signal `off.' In this paper, we present a generic construction of OOCs of length (q-1)N from an OOC of length N, where q is a prime power with gcd(q -1,N) = 1. This construction can be applied to any OOCs with maximum correlation value 1 and weight less than or equal to q. As a result, a new family of asymptotically optimal OOCs with respect to the Johnson bound can be obtained from an optimal OOC with maximum correlation value 1.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An optical orthogonal code (OOC) of length N is a set of {0, 1}-sequences of length N, all of which have a constant weight. It is employed as a spreading code in optical communication systems, where 1 means signal `on' and 0 signal `off.' In this paper, we present a generic construction of OOCs of length (q-1)N from an OOC of length N, where q is a prime power with gcd(q -1,N) = 1. This construction can be applied to any OOCs with maximum correlation value 1 and weight less than or equal to q. As a result, a new family of asymptotically optimal OOCs with respect to the Johnson bound can be obtained from an optimal OOC with maximum correlation value 1.
渐近最优光学正交码的新构造
长度为N的光学正交码(OOC)是长度为N的{0,1}序列的集合,这些序列的权值都是常数。它被用作光通信系统中的扩展码,其中1表示信号“开”,0表示信号“关”。本文从一个长度为N的OOC出发,给出了一个长度为(q-1)N的OOC的一般构造,其中q是gcd(q -1,N) = 1的素幂。这种构造可以应用于任何最大相关值为1且权值小于或等于q的OOC。因此,可以从最大相关值为1的最优OOC中得到关于Johnson界的一组新的渐近最优OOC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信