Communication-Avoiding and Memory-Constrained Sparse Matrix-Matrix Multiplication at Extreme Scale

Md Taufique Hussain, Oguz Selvitopi, A. Buluç, A. Azad
{"title":"Communication-Avoiding and Memory-Constrained Sparse Matrix-Matrix Multiplication at Extreme Scale","authors":"Md Taufique Hussain, Oguz Selvitopi, A. Buluç, A. Azad","doi":"10.1109/IPDPS49936.2021.00018","DOIUrl":null,"url":null,"abstract":"We present a distributed-memory algorithm for sparse matrix-matrix multiplication (SpGEMM) of extremely large matrices where the generated output is larger than the aggregated memory of a target supercomputer. We address this challenge by splitting the computation into batches with each batch generating a set of output columns. We developed a distributed symbolic step to understand the memory requirement and determine the number of batches beforehand. We integrated the multiplication in each batch with an existing communication avoiding techniques to reduce the communication overhead while multiplying matrices in a 3-D process grid. Furthermore, we made the in-node computations faster by designing a sort-free SpGEMM and merging algorithm. Incorporating all the proposed approaches, our SpGEMM scales for large protein-similarity networks using 262,144 cores on a Cray XC40 supercomputer while achieving a 10x speedup using 16x more nodes. Our code is available as part of the Combinatorial BLAS library (https://github.com/PASSIONLab/CombBLAS).","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"9 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a distributed-memory algorithm for sparse matrix-matrix multiplication (SpGEMM) of extremely large matrices where the generated output is larger than the aggregated memory of a target supercomputer. We address this challenge by splitting the computation into batches with each batch generating a set of output columns. We developed a distributed symbolic step to understand the memory requirement and determine the number of batches beforehand. We integrated the multiplication in each batch with an existing communication avoiding techniques to reduce the communication overhead while multiplying matrices in a 3-D process grid. Furthermore, we made the in-node computations faster by designing a sort-free SpGEMM and merging algorithm. Incorporating all the proposed approaches, our SpGEMM scales for large protein-similarity networks using 262,144 cores on a Cray XC40 supercomputer while achieving a 10x speedup using 16x more nodes. Our code is available as part of the Combinatorial BLAS library (https://github.com/PASSIONLab/CombBLAS).
极端尺度下的通信避免和内存约束稀疏矩阵-矩阵乘法
本文提出了一种用于超大矩阵稀疏矩阵乘法(SpGEMM)的分布式内存算法,其中生成的输出大于目标超级计算机的聚合内存。为了解决这个问题,我们将计算分成几批,每批生成一组输出列。我们开发了一个分布式的符号步骤来理解内存需求并事先确定批次的数量。我们将每个批中的乘法与现有的通信避免技术集成在一起,以减少在3-D过程网格中乘法矩阵时的通信开销。此外,通过设计无排序的SpGEMM和合并算法,提高了节点内计算速度。结合所有提出的方法,我们的SpGEMM在Cray XC40超级计算机上使用262,144个内核扩展大型蛋白质相似网络,同时使用16倍的节点实现10倍的加速。我们的代码是组合BLAS库(https://github.com/PASSIONLab/CombBLAS)的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信