Aditya Dhananjay, Ashlesh Sharma, Michael Paik, Jay Chen, Trishank Karthik Kuppusamy, Jinyang Li, L. Subramanian
{"title":"Hermes: data transmission over unknown voice channels","authors":"Aditya Dhananjay, Ashlesh Sharma, Michael Paik, Jay Chen, Trishank Karthik Kuppusamy, Jinyang Li, L. Subramanian","doi":"10.1145/1859995.1860010","DOIUrl":null,"url":null,"abstract":"While the cellular revolution has made voice connectivity ubiquitous in the developing world, data services are largely absent or are prohibitively expensive. In this paper, we present Hermes1, a point-to-point data connectivity solution that works by modulating data onto acoustic signals that are sent over a cellular voice call. The main challenge is that most voice codecs greatly distort signals that are not voice-like; furthermore, the backhaul can be highly heterogeneous and of low quality, thereby introducing unpredictable distortions. Hermes modulates data over the extremely narrow-band approximately 3kHz bandwidth) acoustic carrier, while being severely constrained by the requirement that the resulting sound signals are voice-like, as far as the voice codecs are concerned. Hermes uses a robust data transcoding and modulation scheme to detect and correct errors in the face of bit flips, insertions and deletions; it also adapts the modulation parameters to the observed bit error rate on the actual voice channel. Through real-world experiments, we show that Hermes achieves approximately 1.2 kbps goodput which when compared to SMS, improves throughput by a factor of 5× and reduces the cost-per-byte by over a factor of 50x","PeriodicalId":229719,"journal":{"name":"Proceedings of the sixteenth annual international conference on Mobile computing and networking","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the sixteenth annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1859995.1860010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
While the cellular revolution has made voice connectivity ubiquitous in the developing world, data services are largely absent or are prohibitively expensive. In this paper, we present Hermes1, a point-to-point data connectivity solution that works by modulating data onto acoustic signals that are sent over a cellular voice call. The main challenge is that most voice codecs greatly distort signals that are not voice-like; furthermore, the backhaul can be highly heterogeneous and of low quality, thereby introducing unpredictable distortions. Hermes modulates data over the extremely narrow-band approximately 3kHz bandwidth) acoustic carrier, while being severely constrained by the requirement that the resulting sound signals are voice-like, as far as the voice codecs are concerned. Hermes uses a robust data transcoding and modulation scheme to detect and correct errors in the face of bit flips, insertions and deletions; it also adapts the modulation parameters to the observed bit error rate on the actual voice channel. Through real-world experiments, we show that Hermes achieves approximately 1.2 kbps goodput which when compared to SMS, improves throughput by a factor of 5× and reduces the cost-per-byte by over a factor of 50x