Hiroshi Seki, Kazumasa Yamamoto, T. Akiba, S. Nakagawa
{"title":"Rapid Speaker Adaptation of Neural Network Based Filterbank Layer for Automatic Speech Recognition","authors":"Hiroshi Seki, Kazumasa Yamamoto, T. Akiba, S. Nakagawa","doi":"10.1109/SLT.2018.8639648","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNN) have achieved significant success in the field of automatic speech recognition. Previously, we proposed a filterbank-incorporated DNN which takes power spectra as input features. This method has a function of VTLN (Vocal tract length normalization) and fMLLR (feature-space maximum likelihood linear regression). The filterbank layer can be implemented by using a small number of parameters and is optimized under a framework of backpropagation. Therefore, it is advantageous in adaptation under limited available data. In this paper, speaker adaptation is applied to the filterbank-incorporated DNN. By applying speaker adaptation using 15 utterances, the adapted model gave a 7.4% relative improvement in WER over the baseline DNN at a significance level of 0.005 on CSJ task. Adaptation of filterbank layer also showed better performance than the other adaptation methods; singular value decomposition (SVD) based adaptation and learning hidden unit contributions (LHUC).","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Deep neural networks (DNN) have achieved significant success in the field of automatic speech recognition. Previously, we proposed a filterbank-incorporated DNN which takes power spectra as input features. This method has a function of VTLN (Vocal tract length normalization) and fMLLR (feature-space maximum likelihood linear regression). The filterbank layer can be implemented by using a small number of parameters and is optimized under a framework of backpropagation. Therefore, it is advantageous in adaptation under limited available data. In this paper, speaker adaptation is applied to the filterbank-incorporated DNN. By applying speaker adaptation using 15 utterances, the adapted model gave a 7.4% relative improvement in WER over the baseline DNN at a significance level of 0.005 on CSJ task. Adaptation of filterbank layer also showed better performance than the other adaptation methods; singular value decomposition (SVD) based adaptation and learning hidden unit contributions (LHUC).