Statistical inferences for the Weibull distribution under adaptive progressive type-II censoring plan and their application in wind speed data analysis

J. Kazempoor, A. Habibirad, Adel Ahmadi Nadi, Gholam Reza Mohtashami Borzadaran
{"title":"Statistical inferences for the Weibull distribution under adaptive progressive type-II censoring plan and their application in wind speed data analysis","authors":"J. Kazempoor, A. Habibirad, Adel Ahmadi Nadi, Gholam Reza Mohtashami Borzadaran","doi":"10.19139/soic-2310-5070-1501","DOIUrl":null,"url":null,"abstract":"This paper provides four well-known statistical inferences for the principal parameters regarding the two-parameter Weibull distribution including its hazard, quantile, and survival function based on an adaptive progressive type-II censoring plan. The statistical inferences involve the likelihood and approximate likelihood methods, the Bayesian approach, the bootstrap procedure, and a new conditional technique. To construct Bayesian point estimators and credible intervals, Markov chain Monte Carlo, Metropolis-Hastings, and Gibbs sampling algorithms were used. The Bayesian estimators are developed under conjugate and non-conjugate priors and in the presence of symmetric and asymmetric loss functions. In addition, a conditional estimation technique with interesting distributional characteristics has been introduced. The aforementioned methods are compared extensively through a series of simulations. The results of comparative study showed the superiority of the conditional approach over the other ones. Finally, the developed methods are applied to analyze well-known wind speed data.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides four well-known statistical inferences for the principal parameters regarding the two-parameter Weibull distribution including its hazard, quantile, and survival function based on an adaptive progressive type-II censoring plan. The statistical inferences involve the likelihood and approximate likelihood methods, the Bayesian approach, the bootstrap procedure, and a new conditional technique. To construct Bayesian point estimators and credible intervals, Markov chain Monte Carlo, Metropolis-Hastings, and Gibbs sampling algorithms were used. The Bayesian estimators are developed under conjugate and non-conjugate priors and in the presence of symmetric and asymmetric loss functions. In addition, a conditional estimation technique with interesting distributional characteristics has been introduced. The aforementioned methods are compared extensively through a series of simulations. The results of comparative study showed the superiority of the conditional approach over the other ones. Finally, the developed methods are applied to analyze well-known wind speed data.
自适应渐进式ii型滤波方案下威布尔分布的统计推断及其在风速数据分析中的应用
本文基于自适应渐进式ii型筛选方案,对双参数威布尔分布的主要参数,包括其危害、分位数和生存函数,给出了四个众所周知的统计推断。统计推断涉及似然和近似似然方法、贝叶斯方法、自举过程和一种新的条件技术。为了构造贝叶斯点估计和可信区间,使用了马尔可夫链蒙特卡洛、Metropolis-Hastings和Gibbs抽样算法。研究了共轭先验和非共轭先验,对称损失函数和非对称损失函数下的贝叶斯估计。此外,还介绍了一种具有有趣分布特征的条件估计技术。通过一系列的仿真,对上述方法进行了广泛的比较。对比研究结果表明,条件法具有较强的优越性。最后,将所开发的方法应用于已知风速数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信