Customized Eager-Lazy Data Cleansing for Satisfactory Big Data Veracity

S. Sahri, Rim Moussa
{"title":"Customized Eager-Lazy Data Cleansing for Satisfactory Big Data Veracity","authors":"S. Sahri, Rim Moussa","doi":"10.1145/3472163.3472195","DOIUrl":null,"url":null,"abstract":"Big data systems are becoming mainstream for big data management either for batch processing or real-time processing. In order to extract insights from data, quality issues are very important to address, particularly. A veracity assessment model is consequently needed. In this paper, we propose a model which ties quality of datasets and quality of query resultsets. We particularly examine quality issues raised by a given dataset, order attributes along their fitness for use and correlate veracity metrics to business queries. We validate our work using the open dataset NYC taxi’ trips.","PeriodicalId":242683,"journal":{"name":"Proceedings of the 25th International Database Engineering & Applications Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Database Engineering & Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472163.3472195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Big data systems are becoming mainstream for big data management either for batch processing or real-time processing. In order to extract insights from data, quality issues are very important to address, particularly. A veracity assessment model is consequently needed. In this paper, we propose a model which ties quality of datasets and quality of query resultsets. We particularly examine quality issues raised by a given dataset, order attributes along their fitness for use and correlate veracity metrics to business queries. We validate our work using the open dataset NYC taxi’ trips.
定制急懒数据清理,满足大数据真实性
无论是批量处理还是实时处理,大数据系统正在成为大数据管理的主流。为了从数据中提取洞察力,质量问题是非常重要的。因此,需要一个准确性评估模型。在本文中,我们提出了一个将数据集质量和查询结果集质量联系起来的模型。我们特别检查由给定数据集引起的质量问题,排序属性及其使用适用性,并将准确性指标与业务查询关联起来。我们使用纽约市出租车行程的开放数据集来验证我们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信