Distributed prognostic health management with gaussian process regression

S. Saha, B. Saha, A. Saxena, K. Goebel
{"title":"Distributed prognostic health management with gaussian process regression","authors":"S. Saha, B. Saha, A. Saxena, K. Goebel","doi":"10.1109/AERO.2010.5446841","DOIUrl":null,"url":null,"abstract":"Distributed prognostics architecture design is an enabling step for efficient implementation of health management systems. 12A major challenge encountered in such design is formulation of optimal distributed prognostics algorithms. In this paper, we present a distributed GPR based prognostics algorithm whose target platform is a wireless sensor network. In addition to challenges encountered in a distributed implementation, a wireless network poses constraints on communication patterns, thereby making the problem more challenging. The prognostics application that was used to demonstrate our new algorithms is battery prognostics. In order to present trade-offs within different prognostic approaches, we present comparison with the distributed implementation of a particle filter based prognostics for the same battery data.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

Distributed prognostics architecture design is an enabling step for efficient implementation of health management systems. 12A major challenge encountered in such design is formulation of optimal distributed prognostics algorithms. In this paper, we present a distributed GPR based prognostics algorithm whose target platform is a wireless sensor network. In addition to challenges encountered in a distributed implementation, a wireless network poses constraints on communication patterns, thereby making the problem more challenging. The prognostics application that was used to demonstrate our new algorithms is battery prognostics. In order to present trade-offs within different prognostic approaches, we present comparison with the distributed implementation of a particle filter based prognostics for the same battery data.
高斯过程回归的分布式预后健康管理
分布式预后体系结构设计是有效实施健康管理系统的一个有利步骤。在这种设计中遇到的一个主要挑战是制定最佳分布式预测算法。本文提出了一种以无线传感器网络为目标平台的分布式探地雷达预测算法。除了在分布式实现中遇到的挑战之外,无线网络还对通信模式提出了限制,从而使问题更具挑战性。用于演示我们新算法的预测应用是电池预测。为了展示不同预测方法之间的权衡,我们对相同电池数据的基于粒子滤波的预测的分布式实现进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信