Interaction Pattern and Trajectory Analysis for Studying Group Communication

M. Waller, Sjir Uitdewilligen, Ramón Rico, M. Thommes
{"title":"Interaction Pattern and Trajectory Analysis for Studying Group Communication","authors":"M. Waller, Sjir Uitdewilligen, Ramón Rico, M. Thommes","doi":"10.1108/978-1-80043-500-120211010","DOIUrl":null,"url":null,"abstract":"In order to deepen understanding of team processes in dynamic organizational contexts, we suggest that analyses employing techniques to identify and analyze team member interaction patterns and trajectories are necessary. After presenting a brief review of interaction data coding and reliability requirements, we first review examples of two approaches used in the identification and analysis of interaction patterns in teams: lag sequential analysis and T-pattern analysis. We then describe and discuss three statistical techniques used to analyze team interaction trajectories: random coefficient modeling, latent growth modeling, and discontinuous growth analysis. We close by suggesting several ways in which these techniques could be applied to data analysis in order to expand our knowledge of team interaction, processes, and outcomes in complex and dynamic settings.","PeriodicalId":339787,"journal":{"name":"The Emerald Handbook of Group and Team Communication Research","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Emerald Handbook of Group and Team Communication Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/978-1-80043-500-120211010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to deepen understanding of team processes in dynamic organizational contexts, we suggest that analyses employing techniques to identify and analyze team member interaction patterns and trajectories are necessary. After presenting a brief review of interaction data coding and reliability requirements, we first review examples of two approaches used in the identification and analysis of interaction patterns in teams: lag sequential analysis and T-pattern analysis. We then describe and discuss three statistical techniques used to analyze team interaction trajectories: random coefficient modeling, latent growth modeling, and discontinuous growth analysis. We close by suggesting several ways in which these techniques could be applied to data analysis in order to expand our knowledge of team interaction, processes, and outcomes in complex and dynamic settings.
群体传播研究的互动模式与轨迹分析
为了加深对动态组织背景下团队过程的理解,我们建议采用技术来识别和分析团队成员的互动模式和轨迹是必要的。在简要回顾了交互数据编码和可靠性需求之后,我们首先回顾了在团队中识别和分析交互模式时使用的两种方法的示例:滞后序列分析和t模式分析。然后,我们描述并讨论了用于分析团队互动轨迹的三种统计技术:随机系数建模、潜在增长建模和不连续增长分析。最后,我们提出了几种将这些技术应用于数据分析的方法,以扩展我们对复杂和动态环境中的团队互动、流程和结果的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信