A. Aichert, M. Manhart, Bharath K. Navalpakkam, R. Grimm, J. Hutter, A. Maier, J. Hornegger, A. Doerfler
{"title":"A realistic digital phantom for perfusion C-arm CT based on MRI data","authors":"A. Aichert, M. Manhart, Bharath K. Navalpakkam, R. Grimm, J. Hutter, A. Maier, J. Hornegger, A. Doerfler","doi":"10.1109/NSSMIC.2013.6829168","DOIUrl":null,"url":null,"abstract":"CTP is an important imaging modality for diagnosis of ischemic stroke, which is computed from of a series of consecutive CT-scans during the injection of contrast agent. Contrast flow at any point in space can be tracked as minor changes in intensity over a period of about 40 seconds to one minute, represented as a time-attenuation curve (TAC) for every voxel. This work presents an isotropic, dense, physiologically realistic and dynamic brain phantom for CT perfusion. The phantom is based on MRI scans of a volunteer and is freely available for download.","PeriodicalId":246351,"journal":{"name":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
CTP is an important imaging modality for diagnosis of ischemic stroke, which is computed from of a series of consecutive CT-scans during the injection of contrast agent. Contrast flow at any point in space can be tracked as minor changes in intensity over a period of about 40 seconds to one minute, represented as a time-attenuation curve (TAC) for every voxel. This work presents an isotropic, dense, physiologically realistic and dynamic brain phantom for CT perfusion. The phantom is based on MRI scans of a volunteer and is freely available for download.