Rethinking Overfitting of Multiple Instance Learning for Whole Slide Image Classification

Hongjian Song, Jie Tang, Hongzhao Xiao, Juncheng Hu
{"title":"Rethinking Overfitting of Multiple Instance Learning for Whole Slide Image Classification","authors":"Hongjian Song, Jie Tang, Hongzhao Xiao, Juncheng Hu","doi":"10.1109/ICME55011.2023.00100","DOIUrl":null,"url":null,"abstract":"Multiple instance learning(MIL) is widely used for whole slide image(WSI) classification. However, these methods suffer from severe overfitting. In this paper, we introduce two main causes of such overfitting problems by rethinking the MIL task and formulation of attention-based MIL models: (i) The model is sensitive to the proportion of positive regions, and (ii)incorrectly learns the positional relationship of patches (i.e., the order of instances). To this end, we propose recurrent random padding(RRP) module and patch shuffle(PS) module to tackle these two issues, respectively. Furthermore, we present random alignment(RA) algorithm to solve these two overfitting problems simultaneously. On CAMELYON16 and TCGA-NSCLC, the proposed plug-and-play modules improve the performance of six baselines by large margins. The significant and consistent refinement demonstrates the correctness of our theories and the effectiveness of our modules.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple instance learning(MIL) is widely used for whole slide image(WSI) classification. However, these methods suffer from severe overfitting. In this paper, we introduce two main causes of such overfitting problems by rethinking the MIL task and formulation of attention-based MIL models: (i) The model is sensitive to the proportion of positive regions, and (ii)incorrectly learns the positional relationship of patches (i.e., the order of instances). To this end, we propose recurrent random padding(RRP) module and patch shuffle(PS) module to tackle these two issues, respectively. Furthermore, we present random alignment(RA) algorithm to solve these two overfitting problems simultaneously. On CAMELYON16 and TCGA-NSCLC, the proposed plug-and-play modules improve the performance of six baselines by large margins. The significant and consistent refinement demonstrates the correctness of our theories and the effectiveness of our modules.
对全幻灯片图像分类多实例学习过拟合的再思考
多实例学习(MIL)被广泛应用于全幻灯片图像分类。然而,这些方法存在严重的过拟合问题。在本文中,我们通过重新思考MIL任务和基于注意的MIL模型的制定,介绍了导致这种过拟合问题的两个主要原因:(i)模型对正区域的比例敏感,(ii)错误地学习了补丁的位置关系(即实例的顺序)。为此,我们提出了循环随机填充(RRP)模块和补丁洗牌(PS)模块来分别解决这两个问题。在此基础上,我们提出了随机对齐(RA)算法来同时解决这两个过拟合问题。CAMELYON16 TCGA-NSCLC,拟议的即插即用模块大幅度提高6的性能基线。显著和一致的改进证明了我们的理论的正确性和我们的模块的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信