Study on Sparse MIMO Array for Compressive Sensing Imaging

Qiao Cheng, Y. Hao
{"title":"Study on Sparse MIMO Array for Compressive Sensing Imaging","authors":"Qiao Cheng, Y. Hao","doi":"10.1109/CAMA.2018.8530675","DOIUrl":null,"url":null,"abstract":"This paper discusses Compressive Sensing (CS) imaging based on different multiple-input multiple-output (MIMO) arrays. As the system responses matrix is related to the array geometry, the topology of a MIMO array has a huge impact in CS reconstruction. Numerical simulations demonstrate that the curvilinear array achieves better reconstruction than the Mills Cross array and uniform rectilinear array. Moreover, the traditional point spread function (PSF) is more suitable than the CS PSF for evaluating the performance of a CS imaging system.","PeriodicalId":112989,"journal":{"name":"2018 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"2007 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA.2018.8530675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses Compressive Sensing (CS) imaging based on different multiple-input multiple-output (MIMO) arrays. As the system responses matrix is related to the array geometry, the topology of a MIMO array has a huge impact in CS reconstruction. Numerical simulations demonstrate that the curvilinear array achieves better reconstruction than the Mills Cross array and uniform rectilinear array. Moreover, the traditional point spread function (PSF) is more suitable than the CS PSF for evaluating the performance of a CS imaging system.
稀疏MIMO阵列压缩感知成像研究
本文讨论了基于不同多输入多输出阵列的压缩感知(CS)成像。由于系统响应矩阵与阵列的几何形状有关,因此MIMO阵列的拓扑结构对CS重构有很大的影响。数值模拟结果表明,曲线阵列比米尔斯交叉阵列和均匀直线阵列具有更好的重构效果。此外,传统的点扩展函数(PSF)比CS点扩展函数更适合于CS成像系统的性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信