{"title":"Fixed-point extensions of first-order logic","authors":"Y. Gurevich, S. Shelah","doi":"10.1109/SFCS.1985.27","DOIUrl":null,"url":null,"abstract":"We prove that the three extensions of first-order logic by means of positive inductions, monotone inductions, and so-called non-monotone (in our terminology, inflationary) inductions respectively, all have the same expressive power in the case of finite structures. As a by-product, the collapse of the corresponding fixed-point hierarchies can be deduced.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"292","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 292
Abstract
We prove that the three extensions of first-order logic by means of positive inductions, monotone inductions, and so-called non-monotone (in our terminology, inflationary) inductions respectively, all have the same expressive power in the case of finite structures. As a by-product, the collapse of the corresponding fixed-point hierarchies can be deduced.