A low-cost set CRDT based on causal lengths

Weihai Yu, Sigbjørn Rostad
{"title":"A low-cost set CRDT based on causal lengths","authors":"Weihai Yu, Sigbjørn Rostad","doi":"10.1145/3380787.3393678","DOIUrl":null,"url":null,"abstract":"CRDTs, or Conflict-free Replicated Data Types, are data abstractions that guarantee convergence for replicated data. Set is one of the most fundamental and widely used data types. Existing general-purpose set CRDTs associate every element in the set with causal contexts as meta data. Manipulation of causal contexts can be complicated and costly. We present a new set CRDT, CLSet (causal-length set), where the meta data associated with an element is simply a natural number (called causal length). We compare CLSet with existing general purpose CRDTs in terms of semantics and performance.","PeriodicalId":115452,"journal":{"name":"Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3380787.3393678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

CRDTs, or Conflict-free Replicated Data Types, are data abstractions that guarantee convergence for replicated data. Set is one of the most fundamental and widely used data types. Existing general-purpose set CRDTs associate every element in the set with causal contexts as meta data. Manipulation of causal contexts can be complicated and costly. We present a new set CRDT, CLSet (causal-length set), where the meta data associated with an element is simply a natural number (called causal length). We compare CLSet with existing general purpose CRDTs in terms of semantics and performance.
基于因果长度的低成本集CRDT
crdt,即无冲突复制数据类型,是保证复制数据收敛的数据抽象。Set是最基本和最广泛使用的数据类型之一。现有的通用集crdt将集合中的每个元素与因果上下文作为元数据关联起来。对因果语境的操纵既复杂又昂贵。我们提出了一个新的集CRDT, CLSet(因果长度集),其中与元素相关联的元数据只是一个自然数(称为因果长度)。我们将CLSet与现有的通用crdt在语义和性能方面进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信