Detecting moving objects in airborne forward looking infra-red sequences

A. Strehl, J. Aggarwal
{"title":"Detecting moving objects in airborne forward looking infra-red sequences","authors":"A. Strehl, J. Aggarwal","doi":"10.1109/CVBVS.1999.781089","DOIUrl":null,"url":null,"abstract":"In this paper we propose a system that detects independently moving objects (IMOs) in forward looking infra-red (FLIR) image sequences taken from an airborne, moving platform. Ego-motion effects are removed through a robust multi-scale affine image registration process. Consequently, areas with residual motion indicate object activity. These areas are detected, refined and selected using a Bayes' classifier. The remaining regions are clustered into pairs. Each pair represents an object's front and rear end. Using motion and scene knowledge we estimate object pose and establish a region-of-interest (ROI) for each pair. Edge elements within each ROI are used to segment the convex cover containing the IMO. We show detailed results on real, complex, cluttered and noisy sequences. Moreover, we outline the integration of our robust system into a comprehensive automatic target recognition (ATR) and action classification system.","PeriodicalId":394469,"journal":{"name":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVBVS.1999.781089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

In this paper we propose a system that detects independently moving objects (IMOs) in forward looking infra-red (FLIR) image sequences taken from an airborne, moving platform. Ego-motion effects are removed through a robust multi-scale affine image registration process. Consequently, areas with residual motion indicate object activity. These areas are detected, refined and selected using a Bayes' classifier. The remaining regions are clustered into pairs. Each pair represents an object's front and rear end. Using motion and scene knowledge we estimate object pose and establish a region-of-interest (ROI) for each pair. Edge elements within each ROI are used to segment the convex cover containing the IMO. We show detailed results on real, complex, cluttered and noisy sequences. Moreover, we outline the integration of our robust system into a comprehensive automatic target recognition (ATR) and action classification system.
在机载前视红外序列中检测运动物体
在本文中,我们提出了一个系统来检测独立运动目标(imo)的前视红外(FLIR)图像序列从机载,移动平台。通过鲁棒的多尺度仿射图像配准过程去除自我运动效应。因此,有残余运动的区域表示物体的活动。使用贝叶斯分类器检测、精炼和选择这些区域。剩下的区域成对聚集。每一对代表一个物体的前端和后端。利用运动和场景知识估计物体姿态,并为每对物体建立感兴趣区域(ROI)。每个ROI内的边缘元素用于分割包含IMO的凸盖。我们展示了真实的、复杂的、杂乱的和有噪声的序列的详细结果。此外,我们概述了我们的鲁棒系统集成到一个全面的自动目标识别(ATR)和动作分类系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信