Novel Machine Learning Approach for Sentiment Analysis of Real Time Twitter Data with Apache Flume

M. Rashid, A. Hamid, Nazir Ahmad, M. Rehman, Mir Mohammad Yousuf
{"title":"Novel Machine Learning Approach for Sentiment Analysis of Real Time Twitter Data with Apache Flume","authors":"M. Rashid, A. Hamid, Nazir Ahmad, M. Rehman, Mir Mohammad Yousuf","doi":"10.1109/PDGC50313.2020.9315782","DOIUrl":null,"url":null,"abstract":"A lot of data is generated from multiple sources. This data contains many hidden patterns and information. Many researchers are trying to get meaningful insights out of these patterns. Data from these sources mostly contains opinions. Opinions can be mined to lead various extractions from organizational point of view. One approach is to use Sentiment Analysis. In this paper, the authors are storing the Twitter Streaming Data into HDFS of Hadoop by using Flume and then extracting with Apache Hive. Later, Machine Learning classification algorithms are applied to decode the sentiment in this data using Apache Mahout. A novel approach based on hybrid Naïve Bayes and Decision Tree Algorithms are used to enhance the performance of sentiment analysis of streaming twitter data. The implemented research approach achieved an accuracy of 86.44% in comparison to 81.11% for Naïve Bayes Classifier.","PeriodicalId":347216,"journal":{"name":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC50313.2020.9315782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A lot of data is generated from multiple sources. This data contains many hidden patterns and information. Many researchers are trying to get meaningful insights out of these patterns. Data from these sources mostly contains opinions. Opinions can be mined to lead various extractions from organizational point of view. One approach is to use Sentiment Analysis. In this paper, the authors are storing the Twitter Streaming Data into HDFS of Hadoop by using Flume and then extracting with Apache Hive. Later, Machine Learning classification algorithms are applied to decode the sentiment in this data using Apache Mahout. A novel approach based on hybrid Naïve Bayes and Decision Tree Algorithms are used to enhance the performance of sentiment analysis of streaming twitter data. The implemented research approach achieved an accuracy of 86.44% in comparison to 81.11% for Naïve Bayes Classifier.
使用Apache Flume进行实时Twitter数据情感分析的新颖机器学习方法
大量数据是从多个来源生成的。该数据包含许多隐藏的模式和信息。许多研究人员正试图从这些模式中获得有意义的见解。这些来源的数据大多包含观点。可以从组织的角度挖掘意见,从而引出各种提取。一种方法是使用情绪分析。在本文中,作者使用Flume将Twitter流数据存储到Hadoop的HDFS中,然后使用Apache Hive进行提取。然后,使用Apache Mahout将机器学习分类算法应用于该数据中的情感解码。提出了一种基于Naïve贝叶斯和决策树混合算法的新方法,以提高twitter流数据的情感分析性能。所实现的研究方法的准确率为86.44%,而Naïve贝叶斯分类器的准确率为81.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信