Comparative Analysis of Different ANN Methods for the Noise Wave Temperature Extraction

Vladica Đorđević, Z. Marinković, O. Pronić-Rančić, V. Markovic
{"title":"Comparative Analysis of Different ANN Methods for the Noise Wave Temperature Extraction","authors":"Vladica Đorđević, Z. Marinković, O. Pronić-Rančić, V. Markovic","doi":"10.1109/NEUREL.2018.8586987","DOIUrl":null,"url":null,"abstract":"The noise wave temperatures are extracted from the measured transistor noise parameters usually using time-demanding optimization procedures in microwave circuit simulators. For more efficient extraction of these temperatures, we developed four different extraction methods based on artificial neural networks. The developed extraction methods are compared in terms of accuracy, complexity and effectiveness in the case of GaAs HEMT device.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8586987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The noise wave temperatures are extracted from the measured transistor noise parameters usually using time-demanding optimization procedures in microwave circuit simulators. For more efficient extraction of these temperatures, we developed four different extraction methods based on artificial neural networks. The developed extraction methods are compared in terms of accuracy, complexity and effectiveness in the case of GaAs HEMT device.
不同人工神经网络噪声波温度提取方法的比较分析
在微波电路模拟器中,噪声波的温度是从被测晶体管噪声参数中提取出来的,通常采用耗时的优化程序。为了更有效地提取这些温度,我们开发了四种不同的基于人工神经网络的提取方法。在GaAs HEMT器件的情况下,比较了所开发的提取方法的准确性、复杂性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信