Stability Criteria for Nonlinear Ordinary Differential Equations

O. Mangasarian
{"title":"Stability Criteria for Nonlinear Ordinary Differential Equations","authors":"O. Mangasarian","doi":"10.1137/0301018","DOIUrl":null,"url":null,"abstract":"The main results of this work are three sufficient conditions for the (1) stability, (2) uniform asymptotic stability in the large and (3) instability, of the equilibrium point $x = 0$ of the system of differential equations: $\\dot x = f(t,x)$, $f(t,0) = 0$. Stated roughly these conditions are: The point $x = 0$ is (1) stable if $x'f(t,x)$ is a concave function of x, (2) uniformly asymptotically stable in the large if $x'f(t,x)$ is a concave function of x is a strictly concave function of x, and (3) unstable if $x'f(t,x)$ is a strictly convex function of x. These results are obtained by using the stability and instability criteria of Liapunov and properties of concave and convex functions.","PeriodicalId":215491,"journal":{"name":"Journal of The Society for Industrial and Applied Mathematics, Series A: Control","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Society for Industrial and Applied Mathematics, Series A: Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0301018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The main results of this work are three sufficient conditions for the (1) stability, (2) uniform asymptotic stability in the large and (3) instability, of the equilibrium point $x = 0$ of the system of differential equations: $\dot x = f(t,x)$, $f(t,0) = 0$. Stated roughly these conditions are: The point $x = 0$ is (1) stable if $x'f(t,x)$ is a concave function of x, (2) uniformly asymptotically stable in the large if $x'f(t,x)$ is a concave function of x is a strictly concave function of x, and (3) unstable if $x'f(t,x)$ is a strictly convex function of x. These results are obtained by using the stability and instability criteria of Liapunov and properties of concave and convex functions.
非线性常微分方程的稳定性判据
得到了微分方程系统平衡点$x = 0$的三个充分条件:$\dot x = f(t,x)$, $f(t,0) = 0$,具有(1)稳定性,(2)大范围内一致渐近稳定性和(3)不稳定性。这些条件大致表述为:点$x = 0$是(1)稳定,如果$x'f(t,x)$是x的凹函数,如果$x'f(t,x)$是x的凹函数,如果$x'f(t,x)$是x的严格凹函数,如果$x'f(t,x)$是x的严格凸函数,如果$x'f(t,x)$是不稳定,如果$x'f(t,x)$是x的严格凸函数,则$x = 0$一致渐近稳定。这些结果是利用Liapunov的稳定性和不稳定性判据以及凹凸函数的性质得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信