Compressibility of symmetric-α-stable processes

J. P. Ward, J. Fageot, M. Unser
{"title":"Compressibility of symmetric-α-stable processes","authors":"J. P. Ward, J. Fageot, M. Unser","doi":"10.1109/SAMPTA.2015.7148887","DOIUrl":null,"url":null,"abstract":"Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.
对称-α-稳定过程的可压缩性
在确定性框架内,众所周知,函数的n项小波近似率可以从它们的贝索夫正则性中推导出来。我们用这个原理来确定对称α-稳定(s -α s)随机过程的近似率。首先,我们描述了s - α s过程的Besov正则性。然后是n项近似速率。为了捕捉局部光滑性,我们考虑定义在圆上的稀疏过程,它们是随机微分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信