{"title":"Compressibility of symmetric-α-stable processes","authors":"J. P. Ward, J. Fageot, M. Unser","doi":"10.1109/SAMPTA.2015.7148887","DOIUrl":null,"url":null,"abstract":"Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.