The Generalized Lasso for Sub-gaussian Observations with Dithered Quantization

Christos Thrampoulidis, A. Rawat
{"title":"The Generalized Lasso for Sub-gaussian Observations with Dithered Quantization","authors":"Christos Thrampoulidis, A. Rawat","doi":"10.1109/ALLERTON.2018.8636051","DOIUrl":null,"url":null,"abstract":"In the problem of structured signal recovery from high-dimensional linear observations, it is commonly assumed that full-precision measurements are available. Under this assumption, the recovery performance of the popular Generalized Lasso (G-Lasso) is by now well-established. In this paper, we extend these types of results to the practically relevant settings with quantized measurements. We study two extremes of the quantization schemes, namely, uniform and one-bit quantization; the former imposes no limit on the number of quantization bits, while the second only allows for one bit. In the presence of a uniform dithering signal and when measurement vectors are sub-gaussian, we show that the same algorithm (i.e., the G-Lasso) has favorable recovery guarantees for both uniform and one-bit quantization schemes. Our theoretical results, shed light on the appropriate choice of the range of values of the dithering signal and accurately capture the error dependence on the problem parameters. For example, our error analysis shows that the G-Lasso with one-bit uniformly dithered measurements leads to only a logarithmic rate loss compared to the full- precision measurements.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the problem of structured signal recovery from high-dimensional linear observations, it is commonly assumed that full-precision measurements are available. Under this assumption, the recovery performance of the popular Generalized Lasso (G-Lasso) is by now well-established. In this paper, we extend these types of results to the practically relevant settings with quantized measurements. We study two extremes of the quantization schemes, namely, uniform and one-bit quantization; the former imposes no limit on the number of quantization bits, while the second only allows for one bit. In the presence of a uniform dithering signal and when measurement vectors are sub-gaussian, we show that the same algorithm (i.e., the G-Lasso) has favorable recovery guarantees for both uniform and one-bit quantization schemes. Our theoretical results, shed light on the appropriate choice of the range of values of the dithering signal and accurately capture the error dependence on the problem parameters. For example, our error analysis shows that the G-Lasso with one-bit uniformly dithered measurements leads to only a logarithmic rate loss compared to the full- precision measurements.
具有抖动量化的亚高斯观测的广义Lasso
在从高维线性观测中恢复结构化信号的问题中,通常假设具有全精度测量。在这种假设下,现在流行的广义套索(G-Lasso)的恢复性能已经得到了证实。在本文中,我们将这些类型的结果扩展到具有量化测量的实际相关设置。研究了两种极端的量化方案,即均匀量化和一比特量化;前者对量化比特的数量没有限制,而后者只允许一个比特。在均匀抖动信号存在的情况下,当测量向量为亚高斯时,我们证明了相同的算法(即G-Lasso)对于均匀和一比特量化方案都具有良好的恢复保证。我们的理论结果揭示了抖动信号取值范围的合理选择,并准确地捕获了误差与问题参数的依赖关系。例如,我们的误差分析表明,与全精度测量相比,具有1位均匀抖动测量的G-Lasso仅导致对数速率损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信