Learning Hierarchical Representations for Expressive Speaking Style in End-to-End Speech Synthesis

Xiaochun An, Yuxuan Wang, Shan Yang, Zejun Ma, Lei Xie
{"title":"Learning Hierarchical Representations for Expressive Speaking Style in End-to-End Speech Synthesis","authors":"Xiaochun An, Yuxuan Wang, Shan Yang, Zejun Ma, Lei Xie","doi":"10.1109/ASRU46091.2019.9003859","DOIUrl":null,"url":null,"abstract":"Although Global Style Tokens (GSTs) are a recently-proposed method to uncover expressive factors of variation in speaking style, they are a mixture of style attributes without explicitly considering the factorization of multiple-level speaking styles. In this work, we introduce a hierarchical GST architecture with residuals to Tacotron, which learns multiple-level disentangled representations to model and control different style granularities in synthesized speech. We make hierarchical evaluations conditioned on individual tokens from different GST layers. As the number of layers increases, we tend to observe a coarse to fine style decomposition. For example, the first GST layer learns a good representation of speaker IDs while finer speaking style or emotion variations can be found in higher-level layers. Meanwhile, the proposed model shows good performance of style transfer.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Although Global Style Tokens (GSTs) are a recently-proposed method to uncover expressive factors of variation in speaking style, they are a mixture of style attributes without explicitly considering the factorization of multiple-level speaking styles. In this work, we introduce a hierarchical GST architecture with residuals to Tacotron, which learns multiple-level disentangled representations to model and control different style granularities in synthesized speech. We make hierarchical evaluations conditioned on individual tokens from different GST layers. As the number of layers increases, we tend to observe a coarse to fine style decomposition. For example, the first GST layer learns a good representation of speaker IDs while finer speaking style or emotion variations can be found in higher-level layers. Meanwhile, the proposed model shows good performance of style transfer.
学习端到端语音合成中表达性说话风格的层次表示
虽然全局风格标记(gst)是最近提出的一种揭示说话风格变化的表达因素的方法,但它们是风格属性的混合物,没有明确考虑多层次说话风格的分解。在这项工作中,我们向Tacotron引入了一种带有残差的分层GST架构,该架构学习多层解纠缠表示来建模和控制合成语音中的不同风格粒度。我们根据来自不同GST层的单个令牌进行分层评估。随着层数的增加,我们倾向于观察到从粗到细的样式分解。例如,第一个GST层学习了说话者id的良好表示,而更精细的说话风格或情绪变化可以在更高的层中找到。同时,该模型具有良好的风格迁移性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信