{"title":"Log-Based CRDT for Edge Applications","authors":"N. Saquib, C. Krintz, R. Wolski","doi":"10.1109/IC2E55432.2022.00021","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate extensions for Conflict-Free Replicated Data Types (CRDTs) that permit their use in failure-prone, heterogeneous, resource-constrained, distributed, multi-tier (cloud/edge/device) cloud deployments such as the Internet-of-Things (IoT), while addressing multiple CRDT limitations. Specifically, we employ distributed logging to implement robust, strong eventual consistency of replicas. Our approach also enables uniform reversal of operations and precludes the requirement of exactly-once delivery and idempotence imposed by operation-based CRDTs. Moreover, it exposes CRDT versions for use in debugging and history-based programming. We evaluate our approach for commonly used CRDTs and show that it enables higher operation throughput (up to 1.8x) versus conventional CRDTs for the workloads we consider.","PeriodicalId":415781,"journal":{"name":"2022 IEEE International Conference on Cloud Engineering (IC2E)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cloud Engineering (IC2E)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E55432.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate extensions for Conflict-Free Replicated Data Types (CRDTs) that permit their use in failure-prone, heterogeneous, resource-constrained, distributed, multi-tier (cloud/edge/device) cloud deployments such as the Internet-of-Things (IoT), while addressing multiple CRDT limitations. Specifically, we employ distributed logging to implement robust, strong eventual consistency of replicas. Our approach also enables uniform reversal of operations and precludes the requirement of exactly-once delivery and idempotence imposed by operation-based CRDTs. Moreover, it exposes CRDT versions for use in debugging and history-based programming. We evaluate our approach for commonly used CRDTs and show that it enables higher operation throughput (up to 1.8x) versus conventional CRDTs for the workloads we consider.