Graph covers and quadratic minimization

Nicholas Ruozzi, J. Thaler, S. Tatikonda
{"title":"Graph covers and quadratic minimization","authors":"Nicholas Ruozzi, J. Thaler, S. Tatikonda","doi":"10.1109/ALLERTON.2009.5394484","DOIUrl":null,"url":null,"abstract":"We formulate a new approach to understanding the behavior of the min-sum algorithm by exploiting the properties of graph covers. First, we present a new, natural characterization of scaled diagonally dominant matrices in terms of graph covers; this result motivates our approach because scaled diagonal dominance is a known sufficient condition for the convergence of min-sum in the case of quadratic minimization. We use our understanding of graph covers to characterize the periodic behavior of the min-sum algorithm on a single cycle. Lastly, we explain how to extend the single cycle results to understand the 2-periodic behavior of min-sum for general pairwise MRFs. Some of our techniques apply more broadly, and we believe that by capturing the notion of indistinguishability, graph covers represent a valuable tool for understanding the abilities and limitations of general message-passing algorithms.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We formulate a new approach to understanding the behavior of the min-sum algorithm by exploiting the properties of graph covers. First, we present a new, natural characterization of scaled diagonally dominant matrices in terms of graph covers; this result motivates our approach because scaled diagonal dominance is a known sufficient condition for the convergence of min-sum in the case of quadratic minimization. We use our understanding of graph covers to characterize the periodic behavior of the min-sum algorithm on a single cycle. Lastly, we explain how to extend the single cycle results to understand the 2-periodic behavior of min-sum for general pairwise MRFs. Some of our techniques apply more broadly, and we believe that by capturing the notion of indistinguishability, graph covers represent a valuable tool for understanding the abilities and limitations of general message-passing algorithms.
图覆盖和二次最小化
我们通过利用图覆盖的性质,提出了一种理解最小和算法行为的新方法。首先,我们提出了一种新的、自然的缩放对角占优矩阵的图盖表征;这个结果激发了我们的方法,因为在二次最小化的情况下,比例对角优势是最小和收敛的已知充分条件。我们使用我们对图覆盖的理解来表征最小和算法在单个循环上的周期行为。最后,我们解释了如何扩展单周期结果来理解一般成对mrf的最小和的2周期行为。我们的一些技术应用范围更广,我们相信通过捕捉不可区分性的概念,图覆盖代表了理解一般消息传递算法的能力和局限性的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信