Sublinear-Space Streaming Algorithms for Estimating Graph Parameters on Sparse Graphs

Xiuge Chen, R. Chitnis, Patrick Eades, Anthony Wirth
{"title":"Sublinear-Space Streaming Algorithms for Estimating Graph Parameters on Sparse Graphs","authors":"Xiuge Chen, R. Chitnis, Patrick Eades, Anthony Wirth","doi":"10.48550/arXiv.2305.16815","DOIUrl":null,"url":null,"abstract":"In this paper, we design sub-linear space streaming algorithms for estimating three fundamental parameters -- maximum independent set, minimum dominating set and maximum matching -- on sparse graph classes, i.e., graphs which satisfy $m=O(n)$ where $m,n$ is the number of edges, vertices respectively. Each of the three graph parameters we consider can have size $\\Omega(n)$ even on sparse graph classes, and hence for sublinear-space algorithms we are restricted to parameter estimation instead of attempting to find a solution.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.16815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we design sub-linear space streaming algorithms for estimating three fundamental parameters -- maximum independent set, minimum dominating set and maximum matching -- on sparse graph classes, i.e., graphs which satisfy $m=O(n)$ where $m,n$ is the number of edges, vertices respectively. Each of the three graph parameters we consider can have size $\Omega(n)$ even on sparse graph classes, and hence for sublinear-space algorithms we are restricted to parameter estimation instead of attempting to find a solution.
稀疏图参数估计的亚线性空间流算法
本文设计了一种亚线性空间流算法,用于估计稀疏图类上的三个基本参数——最大独立集、最小支配集和最大匹配,即满足$m=O(n)$的图,其中$m、n$分别为边数、顶点数。即使在稀疏的图类上,我们考虑的三个图参数中的每一个都可以有大小$\Omega(n)$,因此对于次线性空间算法,我们被限制在参数估计而不是试图找到一个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信