Non-definability of Languages by Generalized First-order Formulas over (N,+)

Andreas Krebs, A. Sreejith
{"title":"Non-definability of Languages by Generalized First-order Formulas over (N,+)","authors":"Andreas Krebs, A. Sreejith","doi":"10.1109/LICS.2012.55","DOIUrl":null,"url":null,"abstract":"We consider first-order logic with monoidal quantifiers over words. We show that all languages with a neutral letter, definable using the addition predicate are also definable with the order predicate as the only numerical predicate. Let S be a subset of monoids. Let L be the logic closed under quantification over the monoids in S. Then we prove that L[<;,+] and L[<;] define the same neutral letter languages. Our result can be interpreted as the Crane Beach conjecture to hold for the logic L[<;,+]. As a consequence we get the result of Roy and Straubing that FO+MOD[<;,+] collapses to FO+MOD[<;]. For cyclic groups, we answer an open question of Roy and Straubing, proving that MOD[<;,+] collapses to MOD[<;]. Our result also shows that multiplication as a numerical predicate is necessary for Barrington's theorem to hold and also to simulate majority quantifiers. All these results can be viewed as separation results for highly uniform circuit classes. For example we separate FO[<;,+]-uniform CC0 from FO[<;,+]-uniform ACC0.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider first-order logic with monoidal quantifiers over words. We show that all languages with a neutral letter, definable using the addition predicate are also definable with the order predicate as the only numerical predicate. Let S be a subset of monoids. Let L be the logic closed under quantification over the monoids in S. Then we prove that L[<;,+] and L[<;] define the same neutral letter languages. Our result can be interpreted as the Crane Beach conjecture to hold for the logic L[<;,+]. As a consequence we get the result of Roy and Straubing that FO+MOD[<;,+] collapses to FO+MOD[<;]. For cyclic groups, we answer an open question of Roy and Straubing, proving that MOD[<;,+] collapses to MOD[<;]. Our result also shows that multiplication as a numerical predicate is necessary for Barrington's theorem to hold and also to simulate majority quantifiers. All these results can be viewed as separation results for highly uniform circuit classes. For example we separate FO[<;,+]-uniform CC0 from FO[<;,+]-uniform ACC0.
语言在(N,+)上的广义一阶公式的非定义性
我们考虑单数量词在单词上的一阶逻辑。我们证明了所有具有中性字母的语言,可以用加法谓词定义,也可以用顺序谓词作为唯一的数值谓词定义。设S是模群的一个子集。设L为s中模群上量化下的逻辑闭,然后证明L[<;,+]和L[<;]定义了相同的中性字母语言。我们的结果可以解释为对于逻辑L[<;,+]成立的Crane Beach猜想。因此,我们得到Roy和Straubing的结果,即FO+MOD[<;,+]坍缩为FO+MOD[<;]。对于循环群,我们回答了Roy和Straubing的一个开放性问题,证明了MOD[<;,+]坍缩为MOD[<;]。我们的结果还表明,乘法作为一个数值谓词是巴林顿定理成立和模拟多数量词所必需的。所有这些结果都可以看作是高度均匀电路类的分离结果。例如,我们将FO[<;,+]-uniform CC0与FO[<;,+]-uniform ACC0分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信