Research on Vibration Event's Feature Extraction Method of Φ-OTDR System

Haiqiang Zhu, Baofeng Zhang, Zhili Zhang, Huimin Gao
{"title":"Research on Vibration Event's Feature Extraction Method of Φ-OTDR System","authors":"Haiqiang Zhu, Baofeng Zhang, Zhili Zhang, Huimin Gao","doi":"10.1109/ICMA52036.2021.9512815","DOIUrl":null,"url":null,"abstract":"To be able to more accurately extract the characteristics of different vibration events in the Φ-OTDR system to better identify different vibration events on the optical fibre, this paper proposes a model method that combines variational modal decomposition and multi-scale permutation entropy. The vibration characteristics on the optical fibre are extracted, and the support vector machine is used for event classification, namely the VMD-MPE-SVM model. First of all, this paper performs a variational modal decomposition of the vibration signals collected by the Φ-OTDR system to obtain the eigenmode functions containing the characteristic information of different vibration events. The Second step is that using multiscale permutation entropy to quantify the vibration of each eigenmode function Characters. They are lastly inputting the high-dimensional feature vectors into the support vector machine's classifier to recognise different events. In the experiment, vibrations of different frequencies are performed on the optical fibre, and the recognition accuracy can reach 97.3%. Experimental results show that this model has good real-time performance and accuracy.","PeriodicalId":339025,"journal":{"name":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA52036.2021.9512815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To be able to more accurately extract the characteristics of different vibration events in the Φ-OTDR system to better identify different vibration events on the optical fibre, this paper proposes a model method that combines variational modal decomposition and multi-scale permutation entropy. The vibration characteristics on the optical fibre are extracted, and the support vector machine is used for event classification, namely the VMD-MPE-SVM model. First of all, this paper performs a variational modal decomposition of the vibration signals collected by the Φ-OTDR system to obtain the eigenmode functions containing the characteristic information of different vibration events. The Second step is that using multiscale permutation entropy to quantify the vibration of each eigenmode function Characters. They are lastly inputting the high-dimensional feature vectors into the support vector machine's classifier to recognise different events. In the experiment, vibrations of different frequencies are performed on the optical fibre, and the recognition accuracy can reach 97.3%. Experimental results show that this model has good real-time performance and accuracy.
Φ-OTDR系统振动事件特征提取方法研究
为了能够更准确地提取Φ-OTDR系统中不同振动事件的特征,更好地识别光纤上的不同振动事件,本文提出了一种结合变分模态分解和多尺度排列熵的模型方法。提取光纤的振动特征,利用支持向量机进行事件分类,即VMD-MPE-SVM模型。首先,本文对Φ-OTDR系统采集的振动信号进行变分模态分解,得到包含不同振动事件特征信息的特征模态函数。第二步是利用多尺度排列熵来量化每个特征模态函数特征的振动。最后,他们将高维特征向量输入到支持向量机的分类器中来识别不同的事件。实验中,对光纤进行了不同频率的振动,识别准确率达到97.3%。实验结果表明,该模型具有良好的实时性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信