Deep Learning Analytics for IoT Security over a Configurable BigData Platform : Data-Driven IoT Systems

Stefanos Astaras, S. Efremidis, Angela-Maria Despotopoulou, J. Soldatos, Nikos Kefalakis
{"title":"Deep Learning Analytics for IoT Security over a Configurable BigData Platform : Data-Driven IoT Systems","authors":"Stefanos Astaras, S. Efremidis, Angela-Maria Despotopoulou, J. Soldatos, Nikos Kefalakis","doi":"10.1109/WPMC48795.2019.9096076","DOIUrl":null,"url":null,"abstract":"In response to contemporary security challenges for Internet of Things systems, this paper introduces an architectural framework for data driven security monitoring and automation. The architecture supports advanced data analytics for detecting anomalies at all layers of an IoT system, based on a powerful mechanism of reusable security templates. Also, the paper provides a concrete example of data-driven IoT security for smart objects, based on the use of deep learning algorithms and their implementation over the introduced architecture framework. The algorithms are successfully deployed and used for effective and predictive detection of anomalies and abnormalities at the network and application layers of the respective IoT systems. They manifest how deep learning and AI techniques can be used for efficient security in conjunction with the introduced framework.","PeriodicalId":298927,"journal":{"name":"2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPMC48795.2019.9096076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In response to contemporary security challenges for Internet of Things systems, this paper introduces an architectural framework for data driven security monitoring and automation. The architecture supports advanced data analytics for detecting anomalies at all layers of an IoT system, based on a powerful mechanism of reusable security templates. Also, the paper provides a concrete example of data-driven IoT security for smart objects, based on the use of deep learning algorithms and their implementation over the introduced architecture framework. The algorithms are successfully deployed and used for effective and predictive detection of anomalies and abnormalities at the network and application layers of the respective IoT systems. They manifest how deep learning and AI techniques can be used for efficient security in conjunction with the introduced framework.
基于可配置大数据平台的物联网安全深度学习分析:数据驱动的物联网系统
针对当前物联网系统面临的安全挑战,本文介绍了一种数据驱动的安全监控与自动化体系结构框架。该架构基于可重用安全模板的强大机制,支持高级数据分析,用于检测物联网系统所有层的异常情况。此外,本文还基于深度学习算法的使用及其在引入的架构框架上的实现,提供了智能对象的数据驱动物联网安全的具体示例。这些算法已成功部署,并用于有效和预测性地检测各自物联网系统的网络和应用层的异常和异常。它们展示了深度学习和人工智能技术如何与引入的框架一起用于有效的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信