Subspace estimation and tracking using enhanced versions of Oja's algorithm

S. Attallah, K. Abed-Meraim
{"title":"Subspace estimation and tracking using enhanced versions of Oja's algorithm","authors":"S. Attallah, K. Abed-Meraim","doi":"10.1109/SPAWC.2001.923886","DOIUrl":null,"url":null,"abstract":"We present two normalized versions of the Oja (1992) algorithm (NOja and NOOja) which can be used for the estimation of minor (noise) and principal (signal) subspaces of a vector sequence. The new algorithms offer, as compared to Oja, a faster convergence, a better orthogonality and numerical stability with a slight increase in computational complexity. These algorithms can find many applications, in particular, in wireless communications.","PeriodicalId":435867,"journal":{"name":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2001.923886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present two normalized versions of the Oja (1992) algorithm (NOja and NOOja) which can be used for the estimation of minor (noise) and principal (signal) subspaces of a vector sequence. The new algorithms offer, as compared to Oja, a faster convergence, a better orthogonality and numerical stability with a slight increase in computational complexity. These algorithms can find many applications, in particular, in wireless communications.
子空间估计和跟踪使用增强版的Oja算法
我们提出了Oja(1992)算法的两个标准化版本(NOja和NOOja),它们可用于估计向量序列的次要(噪声)和主要(信号)子空间。与Oja相比,新算法提供了更快的收敛性,更好的正交性和数值稳定性,但计算复杂性略有增加。这些算法可以找到许多应用,特别是在无线通信中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信