Enhanced Non-dominated Sorting Harris's Hawk Multi-objective Optimizer

S. Yasear, K. Ku-Mahamud
{"title":"Enhanced Non-dominated Sorting Harris's Hawk Multi-objective Optimizer","authors":"S. Yasear, K. Ku-Mahamud","doi":"10.1109/ICACS47775.2020.9055941","DOIUrl":null,"url":null,"abstract":"This paper proposes an enhanced non-dominated sorting Harris's hawk multi-objective optimizer (ENDSHHMO) algorithm. In the original non-dominated sorting Harris's hawk multi-objective optimizer (NDSHHMO) algorithm, the convergence parameter is used to control the diversification and intensification during the search process. The parameter value decreases linearly as the number of iterations of the algorithm increases. This adjustment strategy of the parameter cannot fully reflect the actual optimization search process. Therefore, an improved adjustment strategy has been proposed and integrated with the NDSHHMO algorithm. This strategy can ensure that the proposed algorithm has a better diversification and intensification ability during the optimization process and improves the convergence to the Pareto front. The performance of the proposed enhanced NDSHHMO algorithm has been evaluated using a set of well-known multi-objective optimization problems. The results of the ENDSHHMO are compared with the NDSHHMO algorithm, which shows that the proposed algorithm is superior.","PeriodicalId":268675,"journal":{"name":"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS47775.2020.9055941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an enhanced non-dominated sorting Harris's hawk multi-objective optimizer (ENDSHHMO) algorithm. In the original non-dominated sorting Harris's hawk multi-objective optimizer (NDSHHMO) algorithm, the convergence parameter is used to control the diversification and intensification during the search process. The parameter value decreases linearly as the number of iterations of the algorithm increases. This adjustment strategy of the parameter cannot fully reflect the actual optimization search process. Therefore, an improved adjustment strategy has been proposed and integrated with the NDSHHMO algorithm. This strategy can ensure that the proposed algorithm has a better diversification and intensification ability during the optimization process and improves the convergence to the Pareto front. The performance of the proposed enhanced NDSHHMO algorithm has been evaluated using a set of well-known multi-objective optimization problems. The results of the ENDSHHMO are compared with the NDSHHMO algorithm, which shows that the proposed algorithm is superior.
增强型非支配排序哈里斯鹰多目标优化器
提出了一种增强型非支配排序哈里斯鹰多目标优化算法(ENDSHHMO)。在原始的非支配排序Harris’s hawk多目标优化器(NDSHHMO)算法中,利用收敛参数控制搜索过程中的多样化和强化。参数值随着算法迭代次数的增加而线性减小。这种参数调整策略不能完全反映实际的优化搜索过程。为此,提出了一种改进的平差策略,并与NDSHHMO算法相结合。该策略保证了所提算法在优化过程中具有较好的多样化和集约化能力,提高了算法向Pareto前沿的收敛性。利用一组著名的多目标优化问题对所提出的改进NDSHHMO算法的性能进行了评估。将ENDSHHMO算法与NDSHHMO算法进行了比较,结果表明该算法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信