Energy-aware scheduling schemes for cloud data centers on Google trace data

Z. Dong, Wenjie Zhuang, R. Rojas-Cessa
{"title":"Energy-aware scheduling schemes for cloud data centers on Google trace data","authors":"Z. Dong, Wenjie Zhuang, R. Rojas-Cessa","doi":"10.1109/OnlineGreenCom.2014.7114422","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the most efficient server first (MESF) task scheduling scheme to minimize the energy consumed by data-center servers. MESF allocates and schedules tasks to servers according to the energy profile of servers. Energy consumed by data-center servers constitutes the largest portion of the total data-center energy consumption. The proposed MESF scheme uses resource allocation information and server energy profiles to schedule tasks to the servers with the least virtual power consumption (VPC) increment. We tested our proposed scheme on a real-world trace data set from Google clusters, and the simulation results show that the proposed MESF task scheduling scheme outperforms the random-based and least allocated server first schemes on energy savings.","PeriodicalId":412965,"journal":{"name":"2014 IEEE Online Conference on Green Communications (OnlineGreenComm)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Online Conference on Green Communications (OnlineGreenComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OnlineGreenCom.2014.7114422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we propose the most efficient server first (MESF) task scheduling scheme to minimize the energy consumed by data-center servers. MESF allocates and schedules tasks to servers according to the energy profile of servers. Energy consumed by data-center servers constitutes the largest portion of the total data-center energy consumption. The proposed MESF scheme uses resource allocation information and server energy profiles to schedule tasks to the servers with the least virtual power consumption (VPC) increment. We tested our proposed scheme on a real-world trace data set from Google clusters, and the simulation results show that the proposed MESF task scheduling scheme outperforms the random-based and least allocated server first schemes on energy savings.
基于Google跟踪数据的云数据中心的能源感知调度方案
在本文中,我们提出了最有效的服务器优先(MESF)任务调度方案,以尽量减少数据中心服务器的能量消耗。MESF根据服务器的能源状况分配和调度任务给服务器。数据中心服务器消耗的能源占数据中心总能耗的最大比例。MESF方案利用资源分配信息和服务器能源配置信息,将任务调度到VPC增量最小的服务器上。仿真结果表明,本文提出的MESF任务调度方案在节能方面优于基于随机和最小分配服务器优先的调度方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信