Facial Expression Recognition for HCI Applications

F. Dornaika, B. Raducanu
{"title":"Facial Expression Recognition for HCI Applications","authors":"F. Dornaika, B. Raducanu","doi":"10.4018/978-1-59904-849-9.CH095","DOIUrl":null,"url":null,"abstract":"with significant head movement is a challenging problem. It is required by many applications such as human-computer interaction and computer graphics animation (Canamero, 2005 & Picard, 2001). To clas-sify expressions in still images many techniques have been proposed such as Neural Nets (Tian, 2001), Gabor wavelets (Bartlett, 2004), and active appearance models (Sung, 2006). Recently, more attention has been given to modeling facial deformation in dynamic scenarios. Still image classifiers use feature vectors related to a single frame to perform classification.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

with significant head movement is a challenging problem. It is required by many applications such as human-computer interaction and computer graphics animation (Canamero, 2005 & Picard, 2001). To clas-sify expressions in still images many techniques have been proposed such as Neural Nets (Tian, 2001), Gabor wavelets (Bartlett, 2004), and active appearance models (Sung, 2006). Recently, more attention has been given to modeling facial deformation in dynamic scenarios. Still image classifiers use feature vectors related to a single frame to perform classification.
面向人机交互应用的面部表情识别
明显的头部运动是一个具有挑战性的问题。它是许多应用程序所需要的,如人机交互和计算机图形动画(Canamero, 2005 & Picard, 2001)。为了对静止图像中的表情进行分类,人们提出了许多技术,如神经网络(Tian, 2001)、Gabor小波(Bartlett, 2004)和活动外观模型(Sung, 2006)。近年来,人们越来越关注动态场景下面部变形的建模。静止图像分类器使用与单个帧相关的特征向量进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信