A Novel Learning and Response Generating Agent-based Model for Symbolic - Numeric Knowledge Modeling and Combination

A. Doboli, S. Doboli
{"title":"A Novel Learning and Response Generating Agent-based Model for Symbolic - Numeric Knowledge Modeling and Combination","authors":"A. Doboli, S. Doboli","doi":"10.1109/SSCI50451.2021.9660045","DOIUrl":null,"url":null,"abstract":"Many modern applications require both modeling and generative capabilities, so that they can produce novel outcomes that address requirements beyond the solutions used in model training. Current AI approaches arguably emphasize modeling but pay much less attention to generative capabilities. This paper presents a new learning and response generating (LRG) agent-based model, in which interacting agents continuously learn symbolic - numeric knowledge and create new outcomes (responses) using a set of five ways to combine concepts. Each way has both fast, reactive and a slow, planned versions. Experiments present the characteristics of an agent's modeling and generating capabilities.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Many modern applications require both modeling and generative capabilities, so that they can produce novel outcomes that address requirements beyond the solutions used in model training. Current AI approaches arguably emphasize modeling but pay much less attention to generative capabilities. This paper presents a new learning and response generating (LRG) agent-based model, in which interacting agents continuously learn symbolic - numeric knowledge and create new outcomes (responses) using a set of five ways to combine concepts. Each way has both fast, reactive and a slow, planned versions. Experiments present the characteristics of an agent's modeling and generating capabilities.
一种新的基于学习和响应生成代理的符号-数字知识建模与组合模型
许多现代应用程序都需要建模和生成能力,因此它们可以产生新的结果,以满足模型训练中使用的解决方案之外的需求。目前的人工智能方法强调建模,但很少关注生成能力。本文提出了一种新的基于智能体的学习和响应生成(LRG)模型,在该模型中,相互作用的智能体通过五种组合概念的方式不断学习符号-数字知识并产生新的结果(响应)。每种方法都有快速的、反应性的和缓慢的、有计划的版本。实验展示了智能体建模和生成能力的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信