Event extraction from biomedical text using CRF and genetic algorithm

A. Majumder, Asif Ekbal
{"title":"Event extraction from biomedical text using CRF and genetic algorithm","authors":"A. Majumder, Asif Ekbal","doi":"10.1109/C3IT.2015.7060131","DOIUrl":null,"url":null,"abstract":"The main aim of biomedicai information extraction is to capture biomedicai phenomena from textual data by extracting relevant entities, information and relations between biomedicai entities (i.e. proteins and genes). In the recent past the focus is shifted towards extraction of more complex relations in the form of bio-molecular events that may include several entities or other relations. In this paper we propose a supervised machine learning approach based on Conditional Random Field (CRF) using Genetic Algorithm (GA) to detect events, classify them into some predefined categories of interest and to determine the arguments of the events. We implement a set of statistical and linguistic features that represent various morphological, syntactic and contextual information of the bio-molecular trigger words. Experiments using 5-fold cross validation demonstrate the recall, precision and F-measure values of 36.52%, 59.72% and 45.33%, respectively.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The main aim of biomedicai information extraction is to capture biomedicai phenomena from textual data by extracting relevant entities, information and relations between biomedicai entities (i.e. proteins and genes). In the recent past the focus is shifted towards extraction of more complex relations in the form of bio-molecular events that may include several entities or other relations. In this paper we propose a supervised machine learning approach based on Conditional Random Field (CRF) using Genetic Algorithm (GA) to detect events, classify them into some predefined categories of interest and to determine the arguments of the events. We implement a set of statistical and linguistic features that represent various morphological, syntactic and contextual information of the bio-molecular trigger words. Experiments using 5-fold cross validation demonstrate the recall, precision and F-measure values of 36.52%, 59.72% and 45.33%, respectively.
基于CRF和遗传算法的生物医学文本事件提取
生物医学信息提取的主要目的是通过提取相关实体、信息和生物医学实体(即蛋白质和基因)之间的关系,从文本数据中捕获生物医学现象。在最近的过去,重点转移到提取更复杂的关系,在生物分子事件的形式,可能包括几个实体或其他关系。在本文中,我们提出了一种基于条件随机场(CRF)的监督机器学习方法,使用遗传算法(GA)来检测事件,将它们分类到一些预定义的感兴趣的类别中,并确定事件的参数。我们实现了一套统计和语言特征来表示生物分子触发词的各种形态、句法和上下文信息。5重交叉验证的查全率、查准率和f测量值分别为36.52%、59.72%和45.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信