The Mechanics of Hydride Formation and Embrittlement

J. Lufrano, P. Sofronis, H. Birnbaum
{"title":"The Mechanics of Hydride Formation and Embrittlement","authors":"J. Lufrano, P. Sofronis, H. Birnbaum","doi":"10.1115/imece1997-0542","DOIUrl":null,"url":null,"abstract":"\n Transient hydrogen diffusion and hydride formation coupled with material deformation are studied in a hydride forming system. The concept of terminal solid solubility of hydrogen as affected by stress is described and the mode of hydrogen diffusion through the two-phase material (matrix+hydride) is discussed. Probabilistic precipitation of hydride is modeled in the neighborhood of a crack tip under mode I plane strain loading and a uniform initial hydrogen concentration below the stress free terminal solid solubility. A full transient finite element analysis allows for numerical monitoring of the development and expansion of the hydride zone. Information about the shape, size, and density of the hydride in the hydride zone is obtained. The mechanistic effects of the solute hydrogen and hydride formation on the stresses at the crack tip are analyzed and their consequence on the fracture toughness resistance of the material is calculated.","PeriodicalId":407468,"journal":{"name":"Recent Advances in Solids/Structures and Application of Metallic Materials","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids/Structures and Application of Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transient hydrogen diffusion and hydride formation coupled with material deformation are studied in a hydride forming system. The concept of terminal solid solubility of hydrogen as affected by stress is described and the mode of hydrogen diffusion through the two-phase material (matrix+hydride) is discussed. Probabilistic precipitation of hydride is modeled in the neighborhood of a crack tip under mode I plane strain loading and a uniform initial hydrogen concentration below the stress free terminal solid solubility. A full transient finite element analysis allows for numerical monitoring of the development and expansion of the hydride zone. Information about the shape, size, and density of the hydride in the hydride zone is obtained. The mechanistic effects of the solute hydrogen and hydride formation on the stresses at the crack tip are analyzed and their consequence on the fracture toughness resistance of the material is calculated.
氢化物形成和脆化的力学
研究了氢化物形成系统中氢的瞬态扩散和与材料变形耦合的氢化物形成。提出了氢的末端固溶度受应力影响的概念,讨论了氢在两相材料(基体+氢化物)中的扩散模式。在I型平面应变加载和均匀初始氢浓度低于无应力末端固溶度的条件下,在裂纹尖端附近模拟了氢化物的概率析出。一个完整的瞬态有限元分析允许对氢化物区的发展和扩展进行数值监测。获得有关氢化物区域中氢化物的形状、大小和密度的信息。分析了溶质氢和氢化物形成对裂纹尖端应力的机理影响,并计算了它们对材料抗断裂韧性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信