A new approach to qualitative stereo

Y. Hel-Or, S. Edelman
{"title":"A new approach to qualitative stereo","authors":"Y. Hel-Or, S. Edelman","doi":"10.1109/ICPR.1994.576287","DOIUrl":null,"url":null,"abstract":"Nonmetric multidimensional scaling (MDS) is a family of algorithms that allow one to derive a quantitative representation of data from a set of qualitative measurements which must satisfy certain simple constraints. As a tool for vision, MDS combines the advantages of both qualitative and classical approaches, by relying, on the one hand, on an ordinal-scale input representation, and by supporting, on the other hand, the extraction of metric information. The present paper illustrates an application of MDS to the recovery of depth from the rank order of binocular disparity differences for a set of points. Our results indicate that multidimensional scaling constitutes a promising approach to the integration of biological and computational insights into the problem of depth perception.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nonmetric multidimensional scaling (MDS) is a family of algorithms that allow one to derive a quantitative representation of data from a set of qualitative measurements which must satisfy certain simple constraints. As a tool for vision, MDS combines the advantages of both qualitative and classical approaches, by relying, on the one hand, on an ordinal-scale input representation, and by supporting, on the other hand, the extraction of metric information. The present paper illustrates an application of MDS to the recovery of depth from the rank order of binocular disparity differences for a set of points. Our results indicate that multidimensional scaling constitutes a promising approach to the integration of biological and computational insights into the problem of depth perception.
定性立体的新方法
非度量多维尺度(MDS)是一类算法,它允许人们从一组必须满足某些简单约束的定性测量中得出数据的定量表示。作为一种视觉工具,MDS结合了定性方法和经典方法的优点,一方面依赖于有序尺度的输入表示,另一方面支持度量信息的提取。本文阐述了一种基于多元数据的双目视差秩次恢复深度的方法。我们的研究结果表明,多维尺度构成了一种很有前途的方法,可以将生物学和计算见解整合到深度感知问题中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信