Single Image Super-Resolution via Mixed Examples and Sparse Representation

Weirong Liu, Changhong Shi, Chaorong Liu, Jie Liu
{"title":"Single Image Super-Resolution via Mixed Examples and Sparse Representation","authors":"Weirong Liu, Changhong Shi, Chaorong Liu, Jie Liu","doi":"10.1109/ACPR.2017.110","DOIUrl":null,"url":null,"abstract":"Existing super-resolution (SR) methods can be divided into two classes: the external examples SR and the internal examples SR. Although these two types of methods have been achieved satisfactory results, such methods are limited by their inherent flaws. This paper proposes mixed example selection method for combining the external examples with the internal examples. We cluster the internal examples into K classes, and select the similar external examples for every cluster to enrich the training database. And then we learn K discriminative dictionaries for the K cluster examples. Finally, we reconstruct the low resolution images with the learned discriminative dictionaries. Experiments validate the effectiveness of the proposed method in terms of visual and quantitative assessments.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing super-resolution (SR) methods can be divided into two classes: the external examples SR and the internal examples SR. Although these two types of methods have been achieved satisfactory results, such methods are limited by their inherent flaws. This paper proposes mixed example selection method for combining the external examples with the internal examples. We cluster the internal examples into K classes, and select the similar external examples for every cluster to enrich the training database. And then we learn K discriminative dictionaries for the K cluster examples. Finally, we reconstruct the low resolution images with the learned discriminative dictionaries. Experiments validate the effectiveness of the proposed method in terms of visual and quantitative assessments.
基于混合样例和稀疏表示的单幅图像超分辨率
现有的超分辨方法可分为外样例超分辨和内样例超分辨两类,虽然这两类方法都取得了令人满意的结果,但由于其固有的缺陷,这些方法受到了限制。本文提出了一种外部样例与内部样例相结合的混合样例选择方法。我们将内部样例聚为K个类,并为每个类选择相似的外部样例来丰富训练库。然后我们为K个聚类样本学习K个判别字典。最后,利用学习到的判别字典对低分辨率图像进行重构。实验验证了该方法在视觉和定量评估方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信